Publications by authors named "Teng-Han Huang"

A fully transparent resistive memory (TRRAM) based on Hafnium oxide (HfO2) with excellent transparency, resistive switching capability, and environmental stability is demonstrated. The retention time measured at 85 °C is over 3 × 10(4) sec, and no significant degradation is observed in 130 cycling test. Compared with ZnO TRRAM, HfO2 TRRAM shows reliable performance under harsh conditions, such as high oxygen partial pressure, high moisture (relative humidity = 90% at 85 °C), corrosive agent exposure, and proton irradiation.

View Article and Find Full Text PDF

We report the memory device on paper by means of an all-printing approach. Using a sequence of inkjet and screen-printing techniques, a simple metal–insulator–metal device structure is fabricated on paper as a resistive random access memory with a potential to reach gigabyte capacities on an A4 paper. The printed-paper-based memory devices (PPMDs) exhibit reproducible switching endurance, reliable retention, tunable memory window, and the capability to operate under extreme bending conditions.

View Article and Find Full Text PDF

The tolerance/resistance of the electronic devices to extremely harsh environments is of supreme interest. Surface effects and chemical corrosion adversely affect stability and operation uniformity of metal oxide resistive memories. To achieve the surrounding-independent behavior, the surface modification is introduced into the ZnO memristors via incorporating fluorine to replace the oxygen sites.

View Article and Find Full Text PDF