Potassium ions enhance photosynthetic tolerance to salt stress. We hypothesized that potassium ions, by minimizing the trans-thylakoid proton diffusion potential difference, can alleviate over-reduction of the photosynthetic electron transport chain and maintain the functionality of the photosynthetic apparatus. This study investigated the effects of exogenous potassium on the transcription level and activity of proteins related to the photosynthetic electron-transport chain of tobacco seedlings under salt stress.
View Article and Find Full Text PDFPresent evidence suggests that the administration of antibiotics, particularly aminopenicillins, may increase the risk of rash in children with infectious mononucleosis (IM). This retrospective, multicenter cohort study of children with IM was conducted to explore the association between antibiotic exposure in IM children and the risk of rash. A robust error generalized linear regression was performed to address the potential cluster effect, as well as confounding factors such as age and sex.
View Article and Find Full Text PDFAcid rain, which has negative impacts on the vegetation of ecological systems, is widespread in Northern and Southern China. However, relatively little is known about the effects of acid rain on the growth and yield of economically important tree species in China. To address this issue, we studied the responses of mulberry seedlings to simulated acid rain (SAR) at different pH values.
View Article and Find Full Text PDFThis study aimed to further understand the toxicity of high concentrations of nitrogen dioxide (NO) to plants, especially to plant photosynthesis. Tobacco plants in the six-leaf stage were exposed to 16.0 μL L NO to determine the activities of photosystem II (PSII) and photosystem I (PSI) reaction centers, the blocking site of PSII electron transport, the degree of membrane peroxidation and the relative expression of PsbA, PsbO and PsaA genes in the third fully expanded leaves by using gas exchange and chlorophyll fluorescence techniques, biochemical and RT-PCR analysis.
View Article and Find Full Text PDFTo explore the mechanism of how lead (Pb) and cadmium (Cd) stress affects photosynthesis of mulberry (Morus alba L.), we looked at the effects of different concentrations of Pb and Cd stress (at 100 and 200 μmol L), which are two heavy metal elements, on leaf chlorophyll (Chl), photosynthesis gas exchange, Chl fluorescence, and reactive oxygen species (ROS) metabolism in mulberry leaves. The results showed that higher concentrations of Pb and Cd reduced leaf Chl content, especially in Chl a where content was more sensitive than in Chl b.
View Article and Find Full Text PDFChlorophyll (Chl) and effective photoprotective mechanism are important prerequisites to ensure the photosynthetic function of plants under stress. In this study, the effects of 100 mmol L NaCl and NaHCO stress on chlorophyll synthesis and photosynthetic function of mulberry seedlings were studied by physiological combined with proteomics technology. The results show that: NaCl stress had little effect on the expression of Chl synthesis related proteins, and there were no significant changes in Chl content and Chl a:b ratio.
View Article and Find Full Text PDF