Dynamic monitoring of in-situ chemical oxidation (ISCO) of LNAPLs in groundwater is the foundation for evaluating remediation effectiveness. In this study, spectral (SIP) and time-domain induced polarization (TDIP) measurements are conducted in laboratory columns and sandboxes to monitor the ISCO of LNAPL for characterizing oxidant transport and quantifying contaminant consumption under different injection strategies. To support the interpretation, this was combined with total petroleum hydrocarbon (TPH), hydrochemistry and computed tomography (CT) measurements.
View Article and Find Full Text PDFEnhancing the efficacy of CD19 CAR-T cell therapy can significantly improve patient outcomes by reducing relapse rates in CD19 + B cell malignancies. Exogenous or transgenic cytokines are often used to boost the expansion and durability of CAR-T cells but pose risks of severe toxicities. A promising approach to address these limitations is to immobilize cytokines on the surface of CAR-T cells using transmembrane (TM) anchor domains.
View Article and Find Full Text PDFInt J Chron Obstruct Pulmon Dis
September 2024
Background: Systemic immune-inflammation index (SII) is a novel comprehensive inflammatory marker. Inflammation is associated with impaired lung function. We aimed to explore the possible relationship between SII and lung function to examine the potential of SII in predicting lung function decline.
View Article and Find Full Text PDFSpread through air spaces (STAS) represents a relatively novel concept in the pathology of lung cancer, and it specifically refers to the dissemination of tumour cells into the parenchymal air spaces adjacent to the primary tumour. In 2015, the World Health Organization (WHO) classified STAS as a new invasive form of lung adenocarcinoma (LUAD). Many studies investigated the role of STAS and revealed its association with the prognosis of LUAD and its influence on the outcomes of other malignant pulmonary neoplasms.
View Article and Find Full Text PDFAdoptively transferred T cell receptor-engineered T cells are a promising cancer treatment strategy, and the identification of tumour-specific TCRs is essential. Previous studies reported that tumour-reactive T cells and TCRs could be isolated based on the expression of activation markers. However, since T cells with different cell states could not respond uniformly to activation but show a heterogeneous expression profile of activation and effector molecules, isolation of tumour-reactive T cells based on single activation or effector molecules could result in the absence of tumour-reactive T cells; thus, combinations of multiple activation and effector molecules could improve the efficiency of isolating tumour-specific TCRs.
View Article and Find Full Text PDFImmunotherapy has emerged as a hot topic in the treatment of non-small cell lung cancer (NSCLC) with remarkable success. Compared to chemotherapy patients, the 5-year survival rate for immunotherapy patients is 3-fold higher, approximately 4%-5% versus 15%-16%, respectively. Immunotherapies include chimeric antigen receptor T-cell (CAR-T) therapy, tumor vaccines, immune checkpoint inhibitors, and so forth.
View Article and Find Full Text PDFNANOBODY molecules are an innovative class of biotherapeutics based on heavy chain only VHH immunoglobulins. Much like canonical antibodies, they are prone to the formation of charge variants and other post-translational modifications, which can potentially impact their critical quality attributes. Therefore, establishing high-resolution product-specific methods, such as IEX chromatography, is essential for evaluating the purity of these molecules.
View Article and Find Full Text PDFIn-situ chemical oxidation (ISCO) with persulfate, an electrically conductive oxidant, provides a powerful signal for noninvasive geophysical techniques to characterize the remediation process of hydrocarbon contaminants. In this study, remediation with ISCO is conducted in laboratory sandboxes to evaluate the ability of electrical resistivity tomography (ERT) for monitoring the base-activated persulfate remediation process of diesel-contaminated soil. It was found that the resistivity of contaminated sand significantly decreased from 846 Ω·m to below 10 Ω·m after persulfate injection, and all measured chemical parameters showed a noticeable increase.
View Article and Find Full Text PDFSince NKG2D ligands (NKG2DLs) are primarily overexpressed on multiple types of solid tumors but absent on most normal tissues, NKG2DLs could be optimal antigens for CAR-T cells. To date, there have been two types of NKG2DL CARs: (i) the extracellular domain of NKG2D fused to the CD8a transmembrane domain, signaling domains of 4-1BB and CD3ζ (NKBz) and (ii) full-length NKG2D fused to the CD3ζ signaling domain (chNKz). Although NKBz- and chNKz-engineered T cells both showed antitumor activities, a comparison of their functions has not been reported.
View Article and Find Full Text PDFLandfills have been identified as a significant concern to the surrounding surface and groundwater ecosystem because of the discharge of leachate. To tackle the uncertain localization of the contamination plume due to low sampling densities, a combination of hydrochemical analysis and induced polarization survey (IP) is employed to characterize the leachate in a municipal landfill. The polarization effect in the contaminated area is significantly higher than expected for landfill sites, but relatively low chargeability zones (<100 mV/V) indicating the distribution of leachate are observed inside high conductivity (>600 mS/m) areas.
View Article and Find Full Text PDFBackground: Although adoptive cell therapy with tumor infiltrating lymphocytes (TILs) has mediated effective antitumor responses in several cancers, dysfunction and exhaustion of TILs significantly impair the therapeutic effect of TILs. Thus, it is essential to elucidate the exhausted characteristics of TILs and improve the antitumor effect of TILs by reversing their exhaustion. Here, we focused on the influence of autophagy on TILs in terms of T-cell activation, proliferation, and differentiation in vitro and in vivo.
View Article and Find Full Text PDFClin Transl Immunology
September 2022
Objectives: Although adoptive cell therapy with T-cell receptor-engineered T cells (TCR-Ts) has mediated effective antitumor responses in several cancers, senescence of T cells could impair the therapeutic effect of TCR-Ts. Thus, it is essential to elucidate the characteristics of senescent TCR-Ts and how to subsequently improve their antitumor effect. Here, we focused on the influence of autophagy on TCR-Ts, since autophagy is tightly associated with the regulation of T-cell activation, proliferation and differentiation.
View Article and Find Full Text PDFNK cells, especially FDA-approved NK-92 cells, could be used for TCR engineering owing to their specialized cytotoxicity against tumors, safety profile and potential use as an off-the-shelf cellular therapy. The TCR complex requires assembly of TCR- α/ β chains with CD3 molecules (CD3δ, CD3γ, CD3ε, CD3ζ) to be correctly expressed at the cell membrane, and yet NK cells lack expression of these CD3 subunits besides CD3ζ. Since transmembrane regions of TCR α and β chains are involved in TCR complex assembly, transmembrane regions of TCR replaced by CD28 transmembrane domain could result in the expression of TCR independent of its companion CD3 subunits.
View Article and Find Full Text PDFThe inadequate in vivo persistence of chimeric antigen receptor (CAR)-modified T cells has been shown to lead to poor therapeutic efficacy and disease recurrence. In vivo persistence is associated with the differentiation subsets infused, with less differentiated T or T conferring superior renewal capacity and antitumor immunity compared to T or T. However, ex vivo expanded CAR-T cells exhibit phenotypic heterogeneity with majority of T or T subsets and very low populations of T and T.
View Article and Find Full Text PDFMicrocystin-LR (MC-LR) is a potent hepatotoxin that is often associated with blooms of cyanobacteria. The analysis of trace MC-LR plays important role in environmental and health fields. Herein, we developed a low-cost and enzyme-free detection method of MC-LR by using hairpin DNA-templated copper nanoclusters (hpDNA-CuNCs) as fluorescent probe.
View Article and Find Full Text PDFThe REvolutionary Approaches and Devices for Nucleic Acid analysis (READNA) project received funding from the European Commission for 41/2 years. The objectives of the project revolved around technological developments in nucleic acid analysis. The project partners have discovered, created and developed a huge body of insights into nucleic acid analysis, ranging from improvements and implementation of current technologies to the most promising sequencing technologies that constitute a 3(rd) and 4(th) generation of sequencing methods with nanopores and in situ sequencing, respectively.
View Article and Find Full Text PDF