Publications by authors named "Tencza S"

One property common to all chemical or biological threat agents is that they damage mammalian cells. A threat detection and classification method based on the effects of compounds on cells has been developed. This method employs high-content screening (HCS), a concept in drug discovery that enables those who practice cell-based assays to generate deeper biological information about the compounds they are testing.

View Article and Find Full Text PDF

Bis-lentivirus lytic protein 1 (Bis-LLP1) and polymyxin B exhibited similar killing activities against Serratia marcescens. By electron microscopy, bis-LLP1 interacted with the outer and cytoplasmic bacterial membranes, while polymyxin B affected only the outer membrane. The results of standard biochemical probes supported the findings of the electron microscopy studies, suggesting that these antimicrobial peptides have different mechanisms of action.

View Article and Find Full Text PDF

The envelope gene, especially the V(3) region, of HIV-1 has been shown to be a principal determinant of cell tropism, replication and cytopathogenicity of the virus. In addition, the V(1)/V(2) region of the envelope gene has been found to be an important factor in cell tropism. We examined the compatibility between the V(1)/V(2) and C(2)-V(3) domains of HIV-1 gp120 in different combinations on viral replication by using envelope recombinants between ME1 and ME46, two infectious molecular clones with diverse biologic activity longitudinally isolated from one seropositive subject.

View Article and Find Full Text PDF

The calcium-regulatory protein calmodulin (CaM) can bind with high affinity to a region in the cytoplasmic C-terminal tail of glycoprotein 41 of simian immunodeficiency virus (SIV). The amino acid sequence of this region is (1)DLWETLRRGGRW(13)ILAIPRRIRQGLELT(28)L. In this work, we have used near- and far-uv CD, and fluorescence spectroscopy, to study the orientation of this peptide with respect to CaM.

View Article and Find Full Text PDF

The control of equine infectious anemia virus (EIAV) infections of horses has been over the past 20 years based primarily on the identification and elimination of seropositive horses, predominantly by a standardized agar gel immunodiffusion (AGID) assay in centralized reference laboratories. This screening for EIAV-seropositive horses has been to date hindered by the lack of a rapid diagnostic format that can be easily employed in the field. We describe here the development of a rapid solution-phase assay for the presence of serum antibodies to EIAV based on fluorescence polarization (FP) (patent pending).

View Article and Find Full Text PDF

The mechanism by which human immunodeficiency virus type 1 induces depletion of CD4+ T-lymphocytes remains controversial, but may involve cytotoxic viral proteins. Synthetic peptides (lentivirus lytic peptide type 1) corresponding to the carboxyl terminus of the human immunodeficiency virus type 1 transmembrane glycoprotein induce cytopathology at concentrations of 100 nM and above. At these concentrations lentivirus lytic peptide type 1 disrupts mitochondrial integrity of CD4+ T-lymphoblastoid cells and induces other changes characteristic of necrosis.

View Article and Find Full Text PDF

We have previously described a family of cationic amphipathic peptides derived from lentivirus envelope proteins that have properties similar to those of naturally occurring antimicrobial peptides. Here, we explored the effects of amino acid truncations and substitutions on the antimicrobial potency and selectivity of the prototype peptide, LLP1. Removal of seven residues from the C-terminus of LLP1 had little effect on potency, but abrogated haemolytic activity.

View Article and Find Full Text PDF

Two peptide segments designated LLP1 (residues 828-855) and LLP2 (residues 768-788) of the HIV-1 transmembrane (TM) envelope protein display structural and functional properties of calmodulin (CaM) binding. These LLP segments may contribute to cytopathogenesis by binding cellular CaM and inhibiting normal CaM-regulated signal transduction pathways. To determine whether these peptides could interrupt signal transduction in vivo, a cellular assay which uses a reporter gene linked to the nuclear factor of activated T cells (NF-AT) was used.

View Article and Find Full Text PDF

The carboxy-terminal 29 amino acids of the human immunodeficiency virus type 1 transmembrane glycoprotein (HIV-1 TM) are referred to as lentivirus lytic peptide 1 (LLP-1). Synthetic peptides corresponding to LLP-1 have been shown to induce cytolysis and to alter the permeability of cultured cells to various small molecules. To address the mechanisms by which LLP-1 induces cytolysis and membrane permeability changes, various concentrations of LLP-1 were incubated with Xenopus laevis oocytes, and two-electrode, voltage-clamp recording measurements were performed.

View Article and Find Full Text PDF

We have previously described a conserved set of peptides derived from lentiviral envelope transmembrane proteins that are similar to the natural antimicrobial peptides cecropins and magainins in overall structure but bear no sequence homology to them or other members of their class. We describe here an evaluation of the antimicrobial properties of these virally derived peptides, designated lentivirus lytic peptides (LLPs). The results of this study demonstrate that they are potent and selective antibacterial peptides: the prototype sequence, LLP1, is bactericidal to both gram-positive and gram-negative organisms at micromolar concentrations in 10 mM phosphate buffer.

View Article and Find Full Text PDF

One of the better understood structural correlates of Fe3+ binding by the transferrins is the conformational shift demonstrated by both lobes. FbpA, a prokaryotic protein involved in periplasmic iron transport, has previously been shown to be structurally and functionally homologous to the transferrins. Similar to each individual lobe of the transferrins, it is hypothesized that FbpA exists in two distinct conformations depending on whether metal is bound.

View Article and Find Full Text PDF

LLP1 is a peptide, derived from the cytoplasmic tail of HIV-1 TM glycoprotein, that binds and inhibits calmodulin; this region is generally conserved among isolates, but amino acid variation does exist both within clade B and among different clades, as well as SIV. In light of previous studies showing that selected single amino acid changes can have a qualitatively significant effect on the calmodulin-binding properties of this peptide, we sought to examine the properties of naturally occurring variant LLP1 sequences. Using a quantitative fluorescence-based method to measure dissociation constants of calmodulin-LLP1 complexes, a remarkable conservation of calmodulin-binding function among natural variants was revealed.

View Article and Find Full Text PDF

Previous studies have identified two highly basic amphipathic helical regions in the human immunodeficiency virus type 1 transmembrane protein that, in vitro, display both cytolytic and calmodulin-binding and -inhibitory properties that could contribute to cellular dysfunctions and cytopathogenesis during a persistent viral infection. In the current study, the structural specificity of the cytolytic and calmodulin-binding activities of the human immunodeficiency virus type 1 lentivirus lytic peptide (LLP-1) are examined with synthetic peptide homologs and analogs. The results of these studies demonstrate that even minor changes in LLP-1 amino acid content can markedly affect these properties, suggesting that sequence variation in these highly conserved LLP sequences may correlate with alterations in viral cytopathic properties.

View Article and Find Full Text PDF

The ferric iron-binding protein (Fbp) functions as a periplasmic-binding protein in the high-affinity active transport of growth-essential iron by pathogenic Neisseria. Fbp reversibly binds a single ferric ion per molecule of protein with high affinity. Similarly, the transferrins are a highly conserved family of bilobed vertebrate proteins that reversibly bind a single molecule of iron on each of the N- and C-terminal lobes.

View Article and Find Full Text PDF