Publications by authors named "Tenchov B"

In the present work, we studied the interactions of three types of iron oxide nanoparticles (IONPs) with human serum albumin (HSA) by fluorescence and UV-Vis spectroscopy. The determined binding parameters of the reactions and the thermodynamic parameters, including ΔHo, ΔSo, and ΔGo indicated that electrostatic forces play a major role in the interaction of IONPs with HSA. These measurements indicate a fluorescent quenching mechanism based on IONPs-HSA static complex formation.

View Article and Find Full Text PDF

This study focused on the ketogenic diet (KD) effects on oxidative posttranslational protein modification (PPM) as presumptive factors implicated in epileptogenesis. A 28-day of KD treatment was performed. The corneal kindling model of epileptogenesis was used.

View Article and Find Full Text PDF

The human blood plasma proteome profile has been an area of intensive investigation and differential scanning calorimetry (DSC) has come forward as a novel tool in analyzing plasma heat capacity changes to monitor various physiological responses in health and disease. This study used DSC to assess potential alterations in the plasma heat capacity profile of albumin and globulins during extremely demanding physical exercise. We monitored the changes in denaturation profiles of those plasma proteins for five consecutive days of an extraordinary exercise training schedule in 14 young male Special Forces volunteers, as well as after a 30-day recovery period.

View Article and Find Full Text PDF

Tissue engineering demands the development of scaffolds that mimic natural extracellular matrices (ECM). Despite the success in obtaining synthetic interstitial ECM, the production of an artificial basement membrane (BM), the specialized thin sheet of ECM that is pivotal for the functional organization of most tissues and internal organs, is still not achieved. With the long-term aim of developing a flat BM-like structure here we investigated the behavior of acid-soluble Col IV during simultaneous assembly with laminin (LM) in acidic conditions.

View Article and Find Full Text PDF

In this work, we examined by DSC protein denaturation heat capacity profiles for two body fluids, cerebrospinal fluid (CSF) and blood plasma obtained from brain tumor (mainly glioblastoma) patients and healthy volunteers. We observed large distinctions between the heat capacity profiles of CSF and blood plasma, although their protein compositions are believed to have much in common. A prominent, previously unreported CSF feature was the existence of a pre-denaturation exothermic transition peaking at ~ 50-52 °C, recorded for both control and brain tumor CSF.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how thioridazine (TDZ) and chlorpromazine (CPZ) impact erythrocyte (red blood cell) membranes, using two types of hemolytic assays under varying conditions.
  • Both drugs exhibit a biphasic effect under hypotonic conditions, stabilizing membranes at low doses but destabilizing them once a critical concentration is surpassed; TDZ has lower critical concentrations compared to CPZ.
  • Incorporating bovine serum albumin nanoparticles (BSA-NPs) with either drug raises the critical concentrations required for hemolysis, suggesting that BSA-NPs can effectively transport drugs, enabling higher doses with reduced hemolysis risk when administered intravenously.
View Article and Find Full Text PDF

The data presented in this article are related to the research article entitled "Cubic phases in phosphatidylethanolamine dispersions: formation, stability and phase transitions (Tenchov and Koynova, 2017) [1]. This article presents thermodynamic data obtained by differential scanning calorimetry following the evolution of the L - H endotherm upon temperature cycling during the lamellar to cubic phase conversion.

View Article and Find Full Text PDF
Article Synopsis
  • * It highlights recent patents on natural extracts and derived drugs aimed at preventing and treating AD, including the proposed mechanisms by which these remedies may work.
  • * The conclusion emphasizes that AD's multifactorial nature suggests the need for treatments that address various aspects of the disease, with natural products offering potential advantages over traditional single-target drugs.
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the non-lamellar phases formed by membrane lipids, particularly the inverted hexagonal (HII) and cubic phases (Im3m and Pn3m) in diluted aqueous dispersions of phosphatidylethanolamine (PE).
  • It reports on X-ray diffraction data indicating the stability of Im3m and Pn3m phases at room temperature, achieved through temperature cycling during the Lα - HII transition.
  • The research highlights an irreversible phase transition from Im3m to Pn3m between ∼75-85°C, which is characterized by a specific enthalpy and distinct stability features, especially in dipalmitoleoyl PE dispersions with charged lipid mixtures.
View Article and Find Full Text PDF

Differential scanning calorimetry was applied to evaluate the efficacy of preventive treatments with biologically active compounds of plant origin against neurodegenerative disorder in mice. As we reported recently, large differences exist between the heat capacity profiles of water-soluble brain proteome fractions from healthy animals and from animals with scopolamine-induced dementia: the profiles for healthy animals displayed well expressed exothermic event peaking at 40-45°C, by few degrees above body temperature, but still preceding in temperature the proteome endothermic denaturational transitions; the low-temperature exotherm was completely abolished by the scopolamine treatment. Here we explored this signature difference in the heat capacity profiles to assess the efficacy of preventive treatments with protectant drugs anticipated to slow down or block progression of dementia (myrtenal, ellagic acid, lipoic acid and their combinations, including also ascorbic acid).

View Article and Find Full Text PDF

In the present work we combine spectroscopic, DSC and computational approaches to examine the multiple extracellular Glu mutants E204Q/E194Q, E204Q/E194Q/E9Q and E204Q/E194Q/E9Q/E74Q of bacteriorhodopsin by varying solvent ionic strength and composition. Absorption spectroscopy data reveal that the absorption maxima of multiple EC Glu mutants can be tuned by the chloride concentration in the solution. Visible Circular dichroism spectra imply that the specific binding of Cl- can modulate weakened exciton chromophore coupling and reestablish wild type-like bilobe spectral features of the mutants.

View Article and Find Full Text PDF

Lipid aggregates have been used as drug carriers for several decades. Recently, nonlamellar liquid crystalline lipid systems have attracted attention as possible drug-delivery vehicles because of their unique nanostructure and physicochemical properties. Here we summarize data on the nonlamellar phase-forming propensity of the cationic phosphatidylcholines (cationic PCs).

View Article and Find Full Text PDF

From their discovery half a century ago and the subsequent appreciation of their clinical utility, liposomes currently hold a recognized position in the mainstream of drug delivery systems. Conventional techniques for liposome preparation and size reduction are simple to implement and do not require sophisticated equipment. However, most of them are not easy to scale-up for industrial liposome production.

View Article and Find Full Text PDF

The development of nucleic acid-based drugs has attracted considerable interest in the past two decades as a new category of biologics. A key challenge in successfully achieving the full potential of nucleotide therapeutics is their efficient delivery. Synthetic cationic lipids are currently the most extensively used non-viral nucleotide carriers because of their ability to form complexes with the nucleic acids.

View Article and Find Full Text PDF

Lipid aggregates, mainly liposomes, have been used as drug carriers for quite some time. Recently, nonlamellar liquid crystalline lipid systems, such as inverted bicontinuous cubic, hexagonal and sponge mesophases, attract attention as possible drug-delivery vehicles because of their unique microstructure and physicochemical properties. Various bioactive molecules can be solubilized and protected from hydrolysis or oxidation in either the aqueous or the oil lipid phase.

View Article and Find Full Text PDF

Small angle x-ray diffraction revealed a strong influence of the N-terminal influenza hemagglutinin fusion peptide on the formation of nonlamellar lipid phases. Comparative measurements were made on a series of three peptides, a 20-residue wild-type X-31 influenza virus fusion peptide, GLFGAIAGFIENGWEGMIDG, and its two point-mutant, fusion-incompetent peptides G1E and G13L, in mixtures with hydrated phospholipids, either dipalmitoleoylphosphatidylethanolamine (DPoPE), or monomethylated dioleoyl phosphatidylethanolamine (DOPE-Me), at lipid/peptide molar ratios of 200:1 and 50:1. All three peptides suppressed the HII phase and shifted the L(α)-H(II) transition to higher temperatures, simultaneously promoting formation of inverted bicontinuous cubic phases, Q(II), which becomes inserted between the L(α) and H(II) phases on the temperature scale.

View Article and Find Full Text PDF

The purpose of this study was to evaluate two novel liposomal formulations of cisplatin as potential therapeutic agents for treatment of the F98 rat glioma. The first was a commercially produced agent, Lipoplatin™, which currently is in a Phase III clinical trial for treatment of non-small cell lung cancer (NSCLC). The second, produced in our laboratory, was based on the ability of cisplatin to form coordination complexes with lipid cholesteryl hemisuccinate (CHEMS).

View Article and Find Full Text PDF

Aim: Cationic ethylphosphatidylcholines (ePCs) were evaluated for the delivery of siRNA in modified breast cancer cells.

Materials And Methods: Dimyristoleoyl-ePC (C14), dioleoyl-ePC (C18), and dilauroyl-ePC (C12) nanoparticles were complexed with siRNA for green fluorescent protein (GFP) suppression in modified MCF-7 breast cancer cells. The kinetics of GFP suppression were followed over the course of 72 hours.

View Article and Find Full Text PDF

On the basis of data obtained by time-resolved X-ray diffraction, we consider in the present article the occurrence and formation pathways of inverted bicontinuous cubic phases, or bilayer cubic phases, Q (II)(B) , in diluted dispersions of lipids representing major biomembrane lipid classes [phosphatidylethanolamines (PEs), mixtures of PEs and phosphatidylcholines (PCs) with other lipids, glycolipids]. We show that Q (II)(B) formation proceeds much more easily upon cooling from the H(II) phase than upon heating or isothermal conversion from the L(α) phase, thus identifying an indirect but faster route for Q (II)(B) phase induction in lipids. The data collected consistently show that the ability to convert into cubic phase upon temperature cycling appears to be a general property of all lipids exhibiting an L(α) ↔ H(II) phase transition.

View Article and Find Full Text PDF

Gene therapy is a medical technique intended for treatment of disorders caused by defective, missing, or overexpressing genes. Efficient delivery vectors are necessary in order to transport genetic material to the target cells. Such vectors include viral and non-viral carriers.

View Article and Find Full Text PDF

Cholesterol incorporation into lipid bilayers, in the form of multilamellar vesicles or extruded large unilamellar vesicles, has been quantitated. To this aim, the cholesterol contents of bilayers prepared from phospholipid:cholesterol mixtures 33-75 mol% cholesterol have been measured and compared with the original mixture before lipid hydration. There is a great diversity of cases, but under most conditions the actual cholesterol proportion present in the extruded bilayers is much lower than predicted.

View Article and Find Full Text PDF

The present study shows that small admixtures of one chlorophyll a (Chla) molecule per several hundred lipid molecules have strong destabilizing effect on lipid bilayers. This effect is clearly displayed in the properties of the L(alpha)-H(II) transformations and results from a Chla preference for the H(II) relative to the L(alpha) phase. Chla disfavors the lamellar liquid crystalline phase L(alpha) and induces its replacement with inverted hexagonal phase H(II), as is consistently demonstrated by DSC and X-ray diffraction measurements on phosphatidylethanolamine (PE) dispersions.

View Article and Find Full Text PDF

Abstract Synthetic cationic lipids, which form complexes (lipoplexes) with polyanionic DNA, are presently the most widely used constituents of nonviral gene carriers. A large number of cationic amphiphiles have been synthesized and tested in transfection studies. However, due to the complexity of the transfection pathway, no general schemes have emerged for correlating the cationic lipid chemistry with their transfection efficacy and the approaches for optimizing their molecular structures are still largely empirical.

View Article and Find Full Text PDF

Synthetic cationic lipids are widely used components of nonviral gene carriers, and the factors regulating their transfection efficiency are the subject of considerable interest. In view of the important role that electrostatic interactions with the polyanionic nucleic acids play in formation of lipoplexes, a common empirical approach to improving transfection has been the synthesis and testing of amphiphiles with new versions of positively charged polar groups, while much less attention has been given to the role of the hydrophobic lipid moieties. On the basis of data for approximately 20 cationic phosphatidylcholine (PC) derivatives, here we demonstrate that hydrocarbon chain variations of these lipids modulate by over 2 orders of magnitude their transfection efficiency.

View Article and Find Full Text PDF