Publications by authors named "Temsiri Suwan"

The aim of this study was to synthesize silver nanoparticles (AgNPs) by using cellulose derivatives as a reducing agent. Methyl cellulose (MC), hydroxy ethylcellulose (HEC), and hydroxypropyl methylcellulose (HPMC) were compared for their reducing property. HPMC presented the highest reducing power, with equilibrium concentration (EC) of 84.

View Article and Find Full Text PDF

In the present study, silver nanoparticles (AgNPs) were synthesized by green synthesis using Psidium guajava aqueous extract (PE) as a reducing agent and silver nitrate (AgNO3) as a precursor. The obtained AgNPs showed maximum absorbance at 455 nm. The results from energy-dispersive X-ray spectroscopy demonstrate Ag signal at 88.

View Article and Find Full Text PDF

In the present study, three different rice varieties; Jasmine (JM), Niaw Koko-6 (NKK), and Saohai (SH) were determined for reducing power using ferric reducing antioxidant power (FRAP) assay. SH showed the highest reducing property followed by JM and NKK, respectively. All modified rice samples were used to fabricate silver nanoparticles (AgNPs) by reducing silver nitrate (AgNO3) to metallic Ag.

View Article and Find Full Text PDF

The aim of this study was to investigate the antioxidant activity of Caesalpinia sappan aqueous extract (CE) and its potential on synthesis of silver nanoparticles (AgNPs). The antioxidant activity of CE was investigated using ferric reducing antioxidant power (FRAP) assay and two radical scavenging methods using 2,20-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) as free radicals. Silver nitrate (AgNO3) was used as precursor for the synthesis of AgNPs.

View Article and Find Full Text PDF

Rice is staple food for people in many countries for centuries. It is therefore considered as safe and environmental friendly material for pharmaceutical formulations. In the present study, aqueous extracts of three different parts of rice grain; rice bran (RB), rice husk (RH), and rice germ (RG) were compared for their use as reducing agents in synthesis of silver nanoparticles (AgNPs).

View Article and Find Full Text PDF