Publications by authors named "Tempelaars M"

is a Gram-positive non-motile bacterium capable of producing biofilms that contribute to the colonization of surfaces in a range of different environments. In this study, we compared two strains, WCFS1 and CIP104448, in their ability to produce biofilms in static and dynamic (flow) environments using an in-house designed flow setup. This flow setup enables us to impose a non-uniform flow velocity profile across the well.

View Article and Find Full Text PDF

Our gut microbiota directly influences human physiology in health and disease. The myriad of surface glycoconjugates in both the bacterial cell envelope and our gut cells dominate the microbiota-host interface and play a critical role in host response and microbiota homeostasis. Among these, peptidoglycan is the basic glycan polymer offering the cell rigidity and a basis on which many other glycoconjugates are anchored.

View Article and Find Full Text PDF

Multiple stress resistant variants of with mutations in encoding ribosomal protein RpsU have previously been isolated after a single exposure to acid stress. These variants, including LO28 variant V14 with a complete deletion of the gene, showed upregulation of the general stress sigma factor Sigma B-mediated stress resistance genes and had a lower maximum specific growth rate than the LO28 WT, signifying a trade-off between stress resistance and fitness. In the current work V14 has been subjected to an experimental evolution regime, selecting for higher fitness in two parallel evolving cultures.

View Article and Find Full Text PDF

Microbial population heterogeneity leads to different stress responses and growth behavior of individual cells in a population. Previously, a point mutation in the gene () encoding ribosomal protein S21 was identified in a LO28 variant, which leads to increased multi-stress resistance and a reduced maximum specific growth rate. However, the underlying mechanisms of these phenotypic changes remain unknown.

View Article and Find Full Text PDF

Vitamin B , also known as thiamine, is an important vitamin that, besides its role in human health, is converted to meat aromas upon exposure to high temperatures. Therefore, it is relevant for the production of vegan meat-like flavours. In this study, we investigated 48 Saccharomyces cerevisiae strains for their thiamine production capacity by measuring the intracellular and extracellular vitamins produced in the thiamine-free minimal medium after 72 h of growth.

View Article and Find Full Text PDF

The disinfectant peracetic acid (PAA) that is used in the food industry can cause sublethal injury in L. monocytogenes. The effect of preculture temperature on the inactivation and sublethal injury of L.

View Article and Find Full Text PDF
Article Synopsis
  • Bacillus cereus is a food-borne pathogen that can form biofilms, and researchers studied its biofilm formation using transposon mutants, particularly focusing on a mutant lacking the bc2939 gene (Δbc2939).
  • The Δbc2939 mutant exhibited reduced biofilm formation, smaller colony sizes, and changes in morphology compared to the wild type, indicating that the bc2939 gene is vital for robust biofilm development.
  • The study highlighted the roles of tyrosine metabolism and menaquinone-dependent respiration in biofilm formation, revealing that the Δbc2939 mutant had lower production of key proteins for biofilm integrity and increased sensitivity to oxygen.
View Article and Find Full Text PDF

Background: The Bacillus cereus Sigma B (SigB) dependent general stress response is activated via the two-component RsbKY system, which involves a phosphate transfer from RsbK to RsbY. It has been hypothesized that the Hpr-like phosphocarrier protein (Bc1009) encoded by bc1009 in the SigB gene cluster may play a role in this transfer, thereby acting as a regulator of SigB activation. Alternatively, Bc1009 may be involved in the activation of a subset of SigB regulon members.

View Article and Find Full Text PDF

In many natural and technological applications, microbial biofilms grow under fluid flow. In this project, we investigated the influence of flow on the formation and growth of biofilms produced by gram-positive strains WCFS1 and CIP104448. We used an in-house designed device based on a 48-well plate with culture volumes of 0.

View Article and Find Full Text PDF

Gram-positive bacterial extracellular membrane vesicles (EVs) have been drawing more attention in recent years. However, mechanistic insights are still lacking on how EVs are released through the cell walls in Gram-positive bacteria. In this study, we characterized underlying mechanisms of EV production and provide evidence for a role of prophage activation in EV release using the Gram-positive bacterium Lactococcus lactis as a model.

View Article and Find Full Text PDF

The behaviour of pathogens at the single-cell level can be highly variable and can thus affect the detection efficacy of enrichment-based detection methods. The outgrowth of single cells of three Listeria monocytogenes strains was monitored after fluorescence-activated single-cell sorting in non-selective brain heart infusion (BHI) broth and selective half Fraser enrichment broth (HFB) to quantify outgrowth heterogeneity and its effect on the detection probability. Single-cell heterogeneity was higher in HFB compared to non-selective BHI and heterogeneity increased further when cells were heat-stressed.

View Article and Find Full Text PDF

Microbial population heterogeneity contributes to differences in stress response between individual cells in a population, and can lead to the selection of genetically stable variants with increased stress resistance. We previously provided evidence that the multiple-stress resistant Listeria monocytogenes LO28 variant 15, carries a point mutation in the rpsU gene, resulting in an arginine-proline substitution in ribosomal protein RpsU (RpsU). Here, we investigated the trade-off between general stress sigma factor SigB-mediated stress resistance and fitness in variant 15 using experimental evolution.

View Article and Find Full Text PDF

Single-cell analysis of microbial population heterogeneity is a fast growing research area in microbiology due to its potential to identify and quantify the impact of subpopulations on microbial performance in, for example, industrial biotechnology, environmental biology, and pathogenesis. Although several tools have been developed, determination of population heterogenity in anaerobic bacteria, especially spore-forming clostridia species has been amply studied. In this study we applied single cell analysis techniques such as flow cytometry (FCM) and fluorescence-assisted cell sorting (FACS) on the spore-forming succinate producer Pseudoclostridium thermosuccinogenes.

View Article and Find Full Text PDF

Pulsed electric field (PEF) treatment, or electroporation, can be used to load molecules into cells. The permeabilizing effect of the PEF treatment on the cellular membrane can be either reversible or irreversible depending on the severity of the PEF treatment conditions. The influence of PEF on the reversibility of membrane permeabilization in Lactobacillus plantarum WCFS1 by two different fluorescent staining methods was investigated in this study.

View Article and Find Full Text PDF

Microbial population heterogeneity allows for a differential microbial response to environmental stresses and can lead to the selection of stress resistant variants. In this study, we have used two different stress resistant variants of Listeria monocytogenes LO28 with mutations in the rpsU gene encoding ribosomal protein S21, to elucidate features that can contribute to fitness, stress-tolerance and host interaction using a comparative gene profiling and phenotyping approach. Transcriptome analysis showed that 116 genes were upregulated and 114 genes were downregulated in both rpsU variants.

View Article and Find Full Text PDF

Contamination of mussels with the human pathogen Listeria monocytogenes occurs during processing in the factory, possibly from bacteria persisting in the factory's indoor and outdoor areas. In this study, a selection of persistent (n=8) and sporadic (n=8) L. monocytogenes isolates associated with mussel-processing premises in New Zealand were investigated for their phenotypic and genomic characteristics.

View Article and Find Full Text PDF

The ability of spores to recover and grow out after food processing is affected by cellular factors and by the outgrowth conditions. In the current communication we studied the recovery and outgrowth of individually sorted spores in BHI and rice broth media and on agar plates using flow cytometry. We show that recovery of wet heat treated Bacillus cereus ATCC 14579 spores is affected by matrix composition with highest recovery in BHI broth or on rice agar plates, compared to BHI agar plates and rice broth.

View Article and Find Full Text PDF

Spores are widely present in the environment and are common contaminants in the food chain, creating a challenge for food industry. Nowadays, heat treatments conventionally applied in food processing may become milder to comply with consumer desire for products with higher sensory and nutritional values. Consequently subpopulations of spores may emerge that are sublethally damaged rather than inactivated.

View Article and Find Full Text PDF

Sigma 54 is a transcriptional regulator predicted to play a role in physical interaction of bacteria with their environment, including virulence and biofilm formation. In order to study the role of Sigma 54 in Bacillus cereus, a comparative transcriptome and phenotypic study was performed using B. cereus ATCC 14579 WT, a markerless rpoN deletion mutant, and its complemented strain.

View Article and Find Full Text PDF

Bacillus cereus sensu lato is composed of a set of ubiquitous strains including human pathogens that can survive a range of food processing conditions, grow in refrigerated food, and sometimes cause food poisoning. We previously identified the two-component system CasK/R that plays a key role in cold adaptation. To better understand the CasK/R-controlled mechanisms that support low-temperature adaptation, we performed a transcriptomic analysis on the ATCC 14579 strain and its isogenic ∆casK/R mutant grown at 12°C.

View Article and Find Full Text PDF

Biofilm formation of Bacillus cereus reference strains ATCC 14579 and ATCC 10987 and 21 undomesticated food isolates was studied on polystyrene and stainless steel as contact surfaces. For all strains, the biofilm forming capacity was significantly enhanced when in contact with stainless steel (SS) as a surface as compared to polystyrene (PS). For a selection of strains, the total CFU and spore counts in biofilms were determined and showed a good correlation between CFU counts and total biomass of these biofilms.

View Article and Find Full Text PDF

We characterized a new quorum-sensing regulator, PlcRa, which is present in various members of the B. cereus group and identified a signaling heptapeptide for PlcRa activity: PapRa(7). We demonstrated that PlcRa is a 3D structural paralog of PlcR using sequence analysis and homology modeling.

View Article and Find Full Text PDF

In a previous study, the authors found persistent presence of acute inflammation markers such as C-reactive protein and complement factors locally in burn wounds. This persistence of acute inflammation may not only delay local burn wound healing but also have a systemic effect, for instance on the heart. Here, the effects of C1 esterase inhibitor (C1inh), an inhibitor of complement activation, on burn wound progression and the heart were analyzed in rats.

View Article and Find Full Text PDF

This paper describes the molecular responses of Lactobacillus plantarum WCFS1 toward ethanol exposure. Global transcriptome profiling using DNA microarrays demonstrated adaptation of the microorganism to the presence of 8% ethanol over short (10-min and 30-min) and long (24-h) time intervals. A total of 57 genes were differentially expressed at all time points.

View Article and Find Full Text PDF

Cereulide and valinomycin are highly similar cyclic dodecadepsipeptides with potassium ionophoric properties. Cereulide, produced by members of the Bacillus cereus group, is known mostly as emetic toxin, and no ecological function has been assigned. A comparative analysis of the antimicrobial activity of valinomycin produced by Streptomyces spp.

View Article and Find Full Text PDF