Publications by authors named "Tempei Sato"

Article Synopsis
  • - The study investigates the role of scleraxis (Scx)-lineage cells in the development and attachment of skeletal muscles in mouse embryos through targeted cell ablation techniques.
  • - Results showed that the absence of Scx-lineage cells led to significant changes in muscle shape and improper attachment sites, particularly in forelimb and limb girdle muscles.
  • - The findings highlight that while Scx-lineage cells are crucial for muscle attachment and morphology after myofiber fusion, they do not influence the initial separation of myoblasts, indicating important interactions between muscle and connective tissue in development.
View Article and Find Full Text PDF

The body plan along the anteroposterior axis and regional identities are specified by the spatiotemporal expression of genes. Multistep controls are required for their unique expression patterns; however, the molecular mechanisms behind the tight control of genes are not fully understood. In this study, we demonstrated that the / pathway is critical for axial elongation.

View Article and Find Full Text PDF

The WW domain-containing protein 2 (Wwp2) gene, the host gene of miR-140, codes for the Wwp2 protein, which is an HECT-type E3 ubiquitin ligases abundantly expressed in articular cartilage. However, its function remains unclear. Here, we show that mice lacking Wwp2 and mice in which the Wwp2 E3 enzyme is inactivated (Wwp2-C838A) exhibit aggravated spontaneous and surgically induced osteoarthritis (OA).

View Article and Find Full Text PDF

SRY-box 9 (SOX9) is a master transcription factor that regulates cartilage development. SOX9 haploinsufficiency resulting from breakpoints in a ∼1-Mb region upstream of SOX9 was reported in acampomelic campomelic dysplasia (ACD) patients, suggesting that essential enhancer regions of SOX9 for cartilage development are located in this long non-coding sequence. However, the cis-acting enhancer region regulating cartilage-specific SOX9 expression remains to be identified.

View Article and Find Full Text PDF

Mutations in the Cyclin-dependent kinase-like 5 (CDKL5) gene cause severe neurodevelopmental disorders accompanied by intractable epilepsies, i.e. West syndrome or atypical Rett syndrome.

View Article and Find Full Text PDF

Limb bud patterning, outgrowth, and differentiation are precisely regulated in a spatio-temporal manner through integrated networks of transcription factors, signaling molecules, and downstream genes. However, the exact mechanisms that orchestrate morphogenesis of the limb remain to be elucidated. Previously, we have established EMBRYS, a whole-mount in situ hybridization database of transcription factors.

View Article and Find Full Text PDF

Split hand/foot malformation (SHFM) and SHFM combined with long-bone deficiency (SHFLD) are congenital dysgeneses of the limb. Although six different loci/mutations (SHFM1-SHFM6) have been found from studies on families with SHFM, the causes and associated pathogenic mechanisms for a large number of patients remain unidentified. On the basis of the identification of a duplicated gene region involving BHLHA9 in some affected families, BHLHA9 was identified as a novel SHFM/SHFLD-related gene.

View Article and Find Full Text PDF

The secreted glycoprotein Reelin regulates embryonic brain development and adult brain functions. It has been suggested that reduced Reelin activity contributes to the pathogenesis of several neuropsychiatric and neurodegenerative disorders, such as schizophrenia and Alzheimer's disease; however, noninvasive methods that can upregulate Reelin activity have yet to be developed. We previously found that the proteolytic cleavage of Reelin within Reelin repeat 3 (N-t site) abolishes Reelin activity , but it remains controversial as to whether this effect occurs Here we partially purified the enzyme that mediates the N-t cleavage of Reelin from the culture supernatant of cerebral cortical neurons.

View Article and Find Full Text PDF

The periodontal ligament (PDL), which connects the teeth to the alveolar bone, is essential for periodontal tissue homeostasis. Although the significance of the PDL is recognized, molecular mechanisms underlying PDL function are not well known. We report that mohawk homeobox (Mkx), a tendon-specific transcription factor, regulates PDL homeostasis by preventing its degeneration.

View Article and Find Full Text PDF

Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been shown to play key regulatory roles in a range of biological processes, including cell differentiation and development. To identify miRNAs that participate in gonad differentiation, a fundamental and tightly regulated developmental process, we examined miRNA expression profiles at the time of sex determination and during the early fetal differentiation of mouse testes and ovaries using high-throughput sequencing. We identified several miRNAs that were expressed in a sexually dimorphic pattern, including several members of the let-7 family, miR-378, and miR-140-3p.

View Article and Find Full Text PDF

Sox9 plays a critical role in early chondrocyte initiation and promotion as well as repression of later maturation. Fellow Sox family members L-Sox5 and Sox6 also function as regulators of cartilage development by boosting Sox9 activation of chondrocyte-specific genes such as Col2a1 and Agc1; however, the regulatory mechanism and other target genes are largely unknown. MicroRNAs are a class of short, non-coding RNAs that act as negative regulators of gene expression by promoting target mRNA degradation and/or repressing translation.

View Article and Find Full Text PDF
Article Synopsis
  • Mohawk (Mkx) is an atypical homeobox gene important for tendon development, part of the Three Amino Acid Loop Extension superclass.
  • Researchers created Mkx(-/-) mice to study its functions, revealing that these mice had underdeveloped (hypoplastic) tendons despite having a similar number of tendon cells compared to normal mice.
  • The study found that Mkx influences tendon differentiation by affecting the production of type I collagen, with Mkx(-/-) tendons showing smaller collagen fibril diameters and decreased type I collagen levels.
View Article and Find Full Text PDF

Osteoarthritis (OA), the most prevalent aging-related joint disease, is characterized by insufficient extracellular matrix synthesis and articular cartilage degradation, mediated by several proteinases, including Adamts-5. miR-140 is one of a very limited number of noncoding microRNAs (miRNAs) specifically expressed in cartilage; however, its role in development and/or tissue maintenance is largely uncharacterized. To examine miR-140 function in tissue development and homeostasis, we generated a mouse line through a targeted deletion of miR-140.

View Article and Find Full Text PDF

Objective: MicroRNA (miRNA) are a class of noncoding small RNAs that act as negative regulators of gene expression. MiRNA exhibit tissue-specific expression patterns, and changes in their expression may contribute to pathogenesis. The objectives of this study were to identify miRNA expressed in articular chondrocytes, to determine changes in osteoarthritic (OA) cartilage, and to address the function of miRNA-140 (miR-140).

View Article and Find Full Text PDF

The transcription factor, Sry-related High Mobility Group (HMG) box containing gene 9 (Sox9), plays a critical role in cartilage development by initiating chondrogenesis and preventing the subsequent maturation process called chondrocyte hypertrophy. This suppression mechanism by Sox9 on late-stage chondrogenesis partially results from the inhibition of Runt-related transcription factor 2 (Runx2), the main activator of hypertrophic chondrocyte differentiation. However, the precise mechanism by which Sox9 regulates late chondrogenesis is poorly understood.

View Article and Find Full Text PDF