Regulatory T (TREG) cells develop via a program orchestrated by the transcription factor forkhead box protein P3 (FOXP3). Maintenance of the TREG cell lineage relies on sustained FOXP3 transcription via a mechanism involving demethylation of cytosine-phosphate-guanine (CpG)-rich elements at conserved non-coding sequences (CNS) in the FOXP3 locus. This cytosine demethylation is catalyzed by the ten-eleven translocation (TET) family of dioxygenases, and it involves a redox reaction that uses iron (Fe) as an essential cofactor.
View Article and Find Full Text PDFBulk RNA sequencing of Plasmodium spp., the causative parasite of malaria, fails to discriminate developmental-stage-specific gene regulation. Here, we provide a protocol that uses single-cell RNA sequencing of FACS-sorted Plasmodium-chabaudi-chabaudi-AS-infected red blood cells (iRBCs) to characterize developmental-stage-specific modulation of gene expression during malaria blood stage.
View Article and Find Full Text PDFIron recycling prevents the development of anemia under homeostatic conditions. Whether iron recycling was co-opted as a defense strategy to prevent the development of anemia in response to infection is unclear. We find that in severe Plasmodium falciparum malaria, the onset of life-threatening anemia is associated with acute kidney injury (AKI), irrespective of parasite load.
View Article and Find Full Text PDFHypoglycemia is a clinical hallmark of severe malaria, the often-lethal outcome of Plasmodium falciparum infection. Here, we report that malaria-associated hypoglycemia emerges from a non-canonical resistance mechanism, whereby the infected host reduces glycemia to starve Plasmodium. This hypometabolic response is elicited by labile heme, a byproduct of hemolysis that induces illness-induced anorexia and represses hepatic glucose production.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2019
Malaria, the disease caused by spp. infection, remains a major global cause of morbidity and mortality. Host protection from malaria relies on immune-driven resistance mechanisms that kill However, these mechanisms are not sufficient per se to avoid the development of severe forms of disease.
View Article and Find Full Text PDFImmunity to malaria could be categorized broadly as antiparasite or antidisease immunity. While most vaccine research efforts have focused on antiparasite immunity, the evidence from endemic populations suggest that antidisease immunity is an important component of natural immunity to malaria. The processes that mediate antidisease immunity have, however, attracted little to no attention, and most interests have been directed towards the antibody responses.
View Article and Find Full Text PDFBackground: In individuals living in malaria-endemic regions, parasitaemia thresholds for the onset of clinical symptoms vary with transmission intensity. The mechanisms that mediate this relationship are however, unclear. Since inflammatory responses to parasite infection contribute to the clinical manifestation of malaria, this study investigated inflammatory cytokine responses in children with malaria from areas of different transmission intensities (ranging from low to high).
View Article and Find Full Text PDF