Immunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. Here, we evaluate the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to male rhesus macaques. A single dose of MPV/S-2P is highly immunogenic, and a second dose increases the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increases levels of dimeric anti-S IgA in the airways.
View Article and Find Full Text PDFImmunization via the respiratory route is predicted to increase the effectiveness of a SARS-CoV-2 vaccine. We evaluated the immunogenicity and protective efficacy of one or two doses of a live-attenuated murine pneumonia virus vector expressing SARS-CoV-2 prefusion-stabilized spike protein (MPV/S-2P), delivered intranasally/intratracheally to rhesus macaques. A single dose of MPV/S-2P was highly immunogenic, and a second dose increased the magnitude and breadth of the mucosal and systemic anti-S antibody responses and increased levels of dimeric anti-S IgA in the airways.
View Article and Find Full Text PDFPediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza-virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal immunoglobulin A (IgA) and IgG responses.
View Article and Find Full Text PDFPediatric SARS-CoV-2 vaccines are needed that elicit immunity directly in the airways, as well as systemically. Building on pediatric parainfluenza virus vaccines in clinical development, we generated a live-attenuated parainfluenza virus-vectored vaccine candidate expressing SARS-CoV-2 prefusion-stabilized spike (S) protein (B/HPIV3/S-6P) and evaluated its immunogenicity and protective efficacy in rhesus macaques. A single intranasal/intratracheal dose of B/HPIV3/S-6P induced strong S-specific airway mucosal IgA and IgG responses.
View Article and Find Full Text PDFThis review is designed to assist both individuals and organizations involved in animal-based research to understand and appreciate the importance and potential risks of compassion fatigue and euthanasia stress. We reviewed current literature regarding compassion fatigue and euthanasia stress as they relate to the laboratory animal science community. Definitions, recognition, and mitigation steps are clarified.
View Article and Find Full Text PDFMycobacterium tuberculosis infection (Mtb) is the leading cause of death due to a single infectious agent and is among the top ten causes of all human deaths worldwide. CD4 T cells are essential for resistance to Mtb infection, and for decades it has been thought that IFNγ production is the primary mechanism of CD4 T-cell-mediated protection. However, IFNγ responses do not correlate with host protection, and several reports demonstrate that additional anti-tuberculosis CD4 T-cell effector functions remain unaccounted for.
View Article and Find Full Text PDFMucosal-associated invariant T cells (MAITs) are positioned in airways and may be important in the pulmonary cellular immune response against infection, particularly prior to priming of peptide-specific T cells. Accordingly, there is interest in the possibility that boosting MAITs through tuberculosis (TB) vaccination may enhance protection, but MAIT responses in the lungs during tuberculosis are poorly understood. In this study, we compared pulmonary MAIT and peptide-specific CD4 T cell responses in -infected rhesus macaques using 5-OP-RU-loaded MR-1 tetramers and intracellular cytokine staining of CD4 T cells following restimulation with an -derived epitope megapool (MTB300), respectively.
View Article and Find Full Text PDFBotulism is a rare, life-threatening paralytic disease of both humans and animals that is caused by botulinum neurotoxins (BoNT). Botulism is confirmed in the laboratory by the detection of BoNT in clinical specimens, contaminated foods, and cultures. Despite efforts to develop an in vitro method for botulinum toxin detection, the mouse bioassay remains the standard test for laboratory confirmation of this disease.
View Article and Find Full Text PDF