In the last decade, several novel functions of the mammalian Apurinic/Apyrimidinic Endodeoxyribonuclease 1 (APE1) have been discovered, going far beyond its canonical function as DNA repair enzyme and unveiling its potential roles in cancer development. Indeed, it was shown to be involved in DNA G-quadruplex biology and RNA metabolism, most importantly in the miRNA maturation pathway and the decay of oxidized or abasic miRNAs during oxidative stress conditions. In recent years, several noncanonical pathways of miRNA biogenesis have emerged, with a specific focus on guanosine-rich precursors that can form RNA G-quadruplex (rG4) structures.
View Article and Find Full Text PDFHydroxyapatite (HA) is a bioceramic material widely used as a bone biomimetic substitute and can be synthesized by biomineralization, according to which HA nanoparticles are formed on a polymer template. Nevertheless, little is known about the effect of ion doping and biomineralization on cell metabolism, oxidative stress, and DNA damage. In the present contribution, we report on synthesizing and characterizing biomineralized chitosan as a polymer template with HA nanoparticles doped with magnesium (MgHA) and iron ions (FeHA).
View Article and Find Full Text PDFBackground: Older people with diabetes who live at home and receive home care services (HCS) are vulnerable, which may result in a need for more care than the HCS can provide. In this study we aimed to explore associations between pharmacologically treated diabetes and the risk of short-term and long-term nursing home stays (NHS) among older people receiving HCS.
Methods: This nationwide registry study included older people ≥ 65 years receiving HCS, as registered in the Norwegian Information System for the Nursing and Care Sector (IPLOS) (2010-2014).
Onco-microRNAs (onco-miRNAs) are essential players in the post-transcriptional regulation of gene expression and exert a crucial role in tumorigenesis. Novel information about the epitranscriptomic modifications, involved in onco-miRNAs biogenesis, and in the modulation of their interplay with regulatory factors responsible for their processing and sorting are emerging. In this review, we highlight the contribution of bases modifications, sequence motifs, and secondary structures on miRNAs processing and sorting.
View Article and Find Full Text PDFThe base excision repair (BER) Apurinic/apyrimidinic endonuclease 1 (APE1) enzyme is endowed with several non-repair activities including miRNAs processing. APE1 is overexpressed in many cancers but its causal role in the tumorigenic processes is largely unknown. We recently described that APE1 can be actively secreted by mammalian cells through exosomes.
View Article and Find Full Text PDFThe apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an essential enzyme of the base excision repair pathway of non-distorting DNA lesions. In response to genotoxic treatments, APE1 is highly secreted (sAPE1) in association with small-extracellular vesicles (EVs). Interestingly, its presence in the serum of patients with hepatocellular or non-small-cell-lung cancers may represent a prognostic biomarker.
View Article and Find Full Text PDFAbundant ribonucleoside-triphosphate (rNTP) incorporation into DNA by DNA polymerases in the form of ribonucleoside monophosphates (rNMPs) is a widespread phenomenon in nature, resulting in DNA-structural change and genome instability. The rNMP distribution, characteristics, hotspots and association with DNA metabolic processes in human mitochondrial DNA (hmtDNA) remain mostly unknown. Here, we utilize the ribose-seq technique to capture embedded rNMPs in hmtDNA of six different cell types.
View Article and Find Full Text PDFBackground And Aims: Identification of prognostic factors for hepatocellular carcinoma (HCC) opens new perspectives for therapy. Circulating and cellular onco-miRNAs are noncoding RNAs which can control the expression of genes involved in oncogenesis through post-transcriptional mechanisms. These microRNAs (miRNAs) are considered novel prognostic and predictive factors in HCC.
View Article and Find Full Text PDFAPE1 (apurinic/apyrimidinic endodeoxyribonuclease 1) is a central enzyme of the base excision repair (BER) pathway playing a pivotal role in protecting mammalian cells against genotoxins and in safeguarding genome stability. Recently, we demonstrated the APE1 ability to process abasic ribonucleotides embedded in DNA. Here, we provide a pipeline of protocols to quantify endodeoxyribonuclease activity by APE1 on these substrates, by using recombinant protein and whole-cell extracts.
View Article and Find Full Text PDFAPE1 is an essential endodeoxyribonuclease of the base excision repair pathway that maintains genome stability. It was identified as a pivotal factor favoring tumor progression and chemoresistance through the control of gene expression by a redox-based mechanism. APE1 is overexpressed and serum-secreted in different cancers, representing a prognostic and predictive factor and a promising non-invasive biomarker.
View Article and Find Full Text PDFPurpose: Dietary intake may have pronounced effects on circulating biomarker concentrations. Therefore, the aim was to provide a descriptive overview of serum metabolite concentrations in relation to time since last meal, focusing on amino acids, lipids, one-carbon metabolites, and biomarkers of vitamin status.
Methods: We used baseline data from the observational community-based Hordaland Health Study, including 2960 participants aged 46-49 years and 2874 participants aged 70-74 years.
Quercetin-loaded nano-liposomes were prepared by high-pressure homogenization (HPH) at different pressures (up to 150 MPa) and number of passes (up to 3) to define the best processing conditions allowing the lowest particle size and the highest encapsulation efficiency (EE). The process at 150 MPa for 1 pass was the best, producing quercetin-loaded liposomes with the lowest particle size and 42% EE. Advanced techniques (multi-detector asymmetrical-flow field flow fractionation and analytical ultracentrifugation combined with transmission electron microscopy) were further used for the characterization of the liposomes which were oblong in shape (ca.
View Article and Find Full Text PDFFor cells, it is important to repair DNA damage, such as double-strand and single-strand DNA breaks, because unrepaired DNA can compromise genetic integrity, potentially leading to cell death or cancer. Cells have multiple DNA damage repair pathways that have been the subject of detailed genetic, biochemical, and structural studies. Recently, the scientific community has started to gain evidence that the repair of DNA double-strand breaks may occur within biomolecular condensates and that condensates may also contribute to DNA damage through concentrating genotoxic agents used to treat various cancers.
View Article and Find Full Text PDFThe existence of modified ribonucleotide monophosphates embedded in genomic DNA, as a consequence of oxidative stress conditions, including 8-oxo-guanosine and ribose monophosphate abasic site (rAP), has been recently highlighted by several works and associated with oxidative stress conditions. Although human apurinic-apyrimidinic endodeoxyribonuclease 1 (APE1), a key enzyme of the base-excision repair pathway, repairs rAP sites and canonical deoxyribose monophosphate abasic sites with similar efficiency, its incision-repairing activity on 8-oxo-guanosine is very weak. The aims of this work were to: (i) identify proteins able to specifically bind 8-oxo-guanosine embedded in DNA and promote APE1 endoribonuclease activity on this lesion, and (ii) characterize the molecular and biological relevance of this interaction using human cancer cell lines.
View Article and Find Full Text PDFPurpose: To identify modifiable risk factors in early midlife associated with incident hypertension 26 years later in women and men.
Materials And Methods: We used data from 1025 women and 703 men in the community-based Hordaland Health Study examined at the mean age of 42 years (baseline) and after a 26-year follow-up. Patients with hypertension at baseline were excluded.
Background: Elevated plasma methylmalonic acid (MMA) is reported in patients with established coronary heart disease (CHD) and is considered a marker of vitamin B12 deficiency. Moreover, MMA-dependent reactions have been linked to alterations in mitochondrial energy metabolism and oxidative stress, key features in the pathophysiology of cardiovascular diseases (CVDs).
Objectives: We examined whether plasma MMA prospectively predicted the long-term risk of acute myocardial infarction (AMI) and mortality.