Publications by authors named "Teleanu F"

This study reports on the conformational states of nicotinamide adenine dinucleotide (NADH) in water/DMSO mixtures and examines the influence of ion binding. We observe evidence of conformational changes through a series of NMR techniques, including P NMR relaxation ( and ), chemical exchange saturation transfer (CEST), and diffusion-ordered spectroscopy (DOSY) experiments. The observed variation of the conformational states is indicative of the solvent's influence on NADH's structural flexibility.

View Article and Find Full Text PDF

Living systems rely on molecular building blocks with low structural symmetry. Therefore, constituent amino acids and nucleotides yield short-lived nuclear magnetic responses to electromagnetic radiation. Magnetic signals are at the basis of molecular imaging, structure determination and interaction studies.

View Article and Find Full Text PDF

Imaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment.

View Article and Find Full Text PDF

Nuclear magnetization storage, once limited by longitudinal and transverse relaxation lifetimes, and , can be prolonged by symmetry-adapted nuclear spin order, i.e. long-lived states (LLS) and long-lived coherences (LLC), which have significantly extended relaxation time constants compared to and , respectively.

View Article and Find Full Text PDF

The nature of the E-O chemical bond (E = C, Si, Ge, Sn) is investigated in a wide range of model derivatives, such as oxonium cations, hydrogenated/methylated/fluorinated/chlorinated ethers and acyclic oligomers incorporating the E-O-E moiety. By means of density functional theory (DFT) calculations and natural bond orbital (NBO) techniques, we propose a bonding mechanism that explains the structural contrast between the organic and the inorganic counterparts of all these derivatives: the interplay between stabilizing interactions like LP(O)→σ*(E-X) hyperconjugations and LP(O)→d(E) donations with LP(O)⋯σ(E-X) vicinal Pauli repulsions (X = H, C, O, F, Cl) dictates the equilibrium structures in terms of E-O-E angles and E-O bond lengths. In addition, the present work represents the first study of oxonium ions that describes the structural discrepancies among organic derivatives and their heavier analogues.

View Article and Find Full Text PDF

Long-lived spin order-based approaches for magnetic resonance rely on the transition between two magnetic environments of different symmetries, one governed by the magnetic field of the spectrometer and the other where this strong magnetic field is inconsequential. Research on the excitation of magnetic-symmetry transitions in nuclear spins is a scientific field that debuted in Southampton in the year 2000. We advanced in this field carrying the baggage of pre-established directions in NMR spectroscopy.

View Article and Find Full Text PDF
Article Synopsis
  • Recent advancements in molecular symmetry-based techniques for magnetic resonance are significantly impacting areas like molecular imaging, quantum computing, and beyond.
  • The concept of effective spin symmetry, first observed in 2004, has led to the increased use of resilient spin states that allow for more detailed studies of slow processes that weren't easily accessible before.
  • Long-lived states and coherences have been developed to greatly surpass the traditional limitations of relaxation times, enabling researchers to explore new molecular behaviors and future applications in various fields.
View Article and Find Full Text PDF

Nuclear magnetization storage in biologically-relevant molecules opens new possibilities for the investigation of metabolic pathways, provided the lifetimes of magnetization are sufficiently long. Dissolution-dynamic nuclear polarization-based spin-order enhancement, sustained by long-lived states can measure the ratios between concentrations of endogenous molecules on a cellular pathway. These ratios can be used as meters of enzyme function.

View Article and Find Full Text PDF

The contrasting geometrical features between organic and inorganic counterparts of amines and oxanes are explained in terms of an offset between attractive (donor-acceptor) and repulsive (donor-donor) interactions. Natural bond orbital (NBO) calculations carried out at the density functional theory level of theory reveal that hyperconjugative effects in the organic amines and ethers are overcome by repulsive interactions occurring between the lone pair on the nitrogen/oxygen atom and the adjacent σ(C-R) bond orbitals. Although displaying lower energies than in the corresponding organic derivatives, the LP(X) → σ*(E-R) (X = N, O; E = Si, Ge, Sn) interactions in heavier counterparts overcome the LP(X)···σ(E-R) repulsions, impacting thus their structural behavior.

View Article and Find Full Text PDF

We introduce a new symmetry-based method for structural investigations of areas surrounding water-exchanging hydrogens in biomolecules by liquid-state nuclear magnetic resonance spectroscopy. Native structures of peptides and proteins can be solved by NMR with fair resolution, with the notable exception of labile hydrogen sites. The reason why biomolecular structures often remain elusive around exchangeable protons is that the dynamics of their exchange with the solvent hampers the observation of their signals.

View Article and Find Full Text PDF