Background & Aims: The heterodimeric integrin receptor αβ regulates CD4 T cell recruitment to inflamed tissues, but its role in the pathogenesis of non-alcoholic steatohepatitis (NASH) is unknown. Herein, we examined the role of αβ-mediated recruitment of CD4 T cells to the intestine and liver in NASH.
Methods: Male littermate F11r (control) and junctional adhesion molecule A knockout F11r mice were fed a normal diet or a western diet (WD) for 8 weeks.
Biochim Biophys Acta Mol Basis Dis
October 2018
Adiponectin inhibits hepatic stellate cell (HSC) activation and subsequent development of liver fibrosis via multiple mechanisms. Phosphatase and tensin homolog deletion 10 (PTEN) plays a crucial role in suppression of HSC activation, but its regulation by adiponectin is not fully understood. Here, we investigated the effect of adiponectin on PTEN in LX-2 cells, a human cell line and examined the underlying molecular mechanisms involved in adiponectin-mediated upregulation of PTEN activity during fibrosis.
View Article and Find Full Text PDFLiver fibrosis arises from dysregulated wound healing due to persistent inflammatory hepatic injury. Periostin is a nonstructural extracellular matrix protein that promotes organ fibrosis in adults. Here, we sought to identify the molecular mechanisms in periostin-mediated hepatic fibrosis.
View Article and Find Full Text PDFAlcohol consumption promotes loss of intestinal barrier function. However, mechanisms by which ethanol affects the tight junction (TJ), the cellular structure responsible for maintaining the gut epithelial barrier, are not well understood. Three classes of transmembrane proteins comprise TJs: occludin, claudins, and junctional adhesion molecules (JAMs).
View Article and Find Full Text PDFBackground & Aims: There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH.
View Article and Find Full Text PDFThe CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), a major transcriptional regulator of endoplasmic reticulum (ER) stress-mediated apoptosis, is implicated in lipotoxicity-induced ER stress and hepatocyte apoptosis in non-alcoholic fatty liver disease (NAFLD). We have previously demonstrated that the glucagon-like peptide-1 (GLP-1) agonist, liraglutide, protects steatotic hepatocytes from lipotoxicity-induced apoptosis by improved handling of free fatty acid (FFA)-induced ER stress. In the present study, we investigated whether CHOP is critical for GLP-1-mediated restoration of ER homeostasis and mitigation of hepatocyte apoptosis in a murine model of NASH (non-alcoholic steatohepatitis).
View Article and Find Full Text PDFUnlabelled: Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of the metabolic syndrome (MetS). Up to a third of NAFLD subjects are at risk for developing nonalcoholic steatohepatitis (NASH). Many rodent models fail to replicate both MetS and NASH.
View Article and Find Full Text PDFLiver fibrosis is a growing global health problem characterized by excess deposition of fibrillar collagen, and activation of hepatic stellate cells (HSCs). Adiponectin is known to possess anti-fibrotic properties; however a high physiological concentration and multiple forms circulating in blood prohibit clinical use. Recently, an adiponectin-like small synthetic peptide agonist (ADP355: H-DAsn-Ile-Pro-Nva-Leu-Tyr-DSer-Phe-Ala-DSer-NH2) was synthesized for the treatment of murine breast cancer.
View Article and Find Full Text PDFPrevious evidence indicates that adiponectin possesses antifibrogenic activity in inhibiting liver fibrosis. Therapeutic strategies, however, are limited by adiponectin quaternary structure and effective concentrations in circulation. Here we postulate a novel molecular mechanism, whereby adiponectin targets focal adhesion kinase (FAK) activity and disrupts key features of the fibrogenic response.
View Article and Find Full Text PDFGap junction channels composed of connexins connect cells, allowing intercellular communication. Their cellular assembly involves a unique quality-control pathway. Some connexins [including connexin43 (Cx43) and Cx46] oligomerize in the trans-Golgi network following export of stabilized monomers from the endoplasmic reticulum (ER).
View Article and Find Full Text PDFConnexin43 (Cx43) is a gap junction protein that forms multimeric channels that enable intercellular communication through the direct transfer of signals and metabolites. Although most multimeric protein complexes form in the endoplasmic reticulum (ER), Cx43 seems to exit from the ER as monomers and subsequently oligomerizes in the Golgi complex. This suggests that one or more protein chaperones inhibit premature Cx43 oligomerization in the ER.
View Article and Find Full Text PDFVolume depletion due to persistent glucosuria-induced osmotic diuresis is a significant problem in uncontrolled diabetes mellitus (DM). Angiotensin II receptor blockers (ARBs), such as candesartan, slow the progression of chronic kidney disease in patients with DM. However, mice with genetic knockout of components of the renin-angiotensin system have urine concentrating defects, suggesting that ARBs may exacerbate the volume depletion.
View Article and Find Full Text PDFTissue barrier function is directly mediated by tight junction transmembrane proteins known as claudins. Cells that form tight junctions typically express multiple claudin isoforms which suggests that heterotypic (head-to-head) binding between different claudin isoforms may play a role in regulating paracellular permeability. However, little is known about motifs that control heterotypic claudin compatibility.
View Article and Find Full Text PDFUrea transport, mediated by the urea transporter A1 (UT-A1) and/or UT-A3, is important for the production of concentrated urine. Vasopressin rapidly increases urea transport in rat terminal inner medullary collecting ducts (IMCD). A previous study showed that one mechanism for rapid regulation of urea transport is a vasopressin-induced increase in UT-A1 phosphorylation.
View Article and Find Full Text PDFThe primary mechanism by which the kidneys mediate net acid excretion is through ammonia metabolism. In the current study, we examined whether chronic metabolic acidosis, which increases ammonia metabolism, alters the cell-specific and/or the subcellular expression of the ammonia transporter family member, Rhcg, in the outer medullary collecting duct in the inner stripe (OMCDi). Chronic metabolic acidosis was induced in normal SD rats by HCl ingestion for 7 days; controls were pair-fed.
View Article and Find Full Text PDFAm J Physiol Regul Integr Comp Physiol
May 2006
Mammalian urea transporters are facilitated membrane transport proteins belonging to two families, UT-A and UT-B. They are best known for their role of maintaining the renal inner medullary urinary concentrating gradient. Urea transporters have also been identified in tissues not typically associated with urea metabolism.
View Article and Find Full Text PDF