Bone morphogenetic proteins (BMPs) have been used for orthopedic and dental application due to their osteoinductive properties; however, substantial numbers of adverse reactions such as heterotopic bone formation, increased bone resorption and greater cancer risk have been reported. Since bone morphogenetic proteins signaling exerts pleiotropic effects on various tissues, it is crucial to understand tissue-specific and context-dependent functions of bone morphogenetic proteins. We previously reported that loss-of-function of bone morphogenetic proteins receptor type IA (BMPR1A) in osteoblasts leads to more bone mass in mice partly due to inhibition of bone resorption, indicating that bone morphogenetic protein signaling in osteoblasts promotes osteoclast function.
View Article and Find Full Text PDFGliomas constitute 80% of malignant brain tumors. The survival rate of patients diagnosed with malignant gliomas is only 34.4%, as seen in both adults as well as children.
View Article and Find Full Text PDFBrain cancer effected around estimated 23 890 adults and 3540 children under the age of 15 in 2020. The chemotherapeutic agents that are already approved by the FDA for brain cancer are proving to be not highly effective because of the interference from the tumor microenvironment as well as their own toxicities. Added to this is the impedance presented by the extremely restrictive permeability of the blood brain barrier (BBB).
View Article and Find Full Text PDFGliomas are highly lethal forms of cancers occurring in the brain. Delivering the drugs into the brain is a major challenge to the treatment of gliomas because of the highly selectively permeable blood-brain barrier (BBB). Tapping the potential of receptor-mediated drug delivery systems using targeted nanoparticles (NPs) is a sought-after step forward toward successful glioma treatment.
View Article and Find Full Text PDF