Predicting the functional consequences of single point mutations has relevance to protein function annotation and to clinical analysis/diagnosis. We developed and tested Packpred that makes use of a multi-body clique statistical potential in combination with a depth-dependent amino acid substitution matrix (FADHM) and positional Shannon entropy to predict the functional consequences of point mutations in proteins. Parameters were trained over a saturation mutagenesis data set of T4-lysozyme (1,966 mutations).
View Article and Find Full Text PDFBiological processes are often mediated by complexes formed between proteins and various biomolecules. The 3D structures of such protein-biomolecule complexes provide insights into the molecular mechanism of their action. The structure of these complexes can be predicted by various computational methods.
View Article and Find Full Text PDFDespite Nipah virus outbreaks having high mortality rates (>70% in Southeast Asia), there are no licensed drugs against it. In this study, we have considered all 9 Nipah proteins as potential therapeutic targets and computationally identified 4 putative peptide inhibitors (against G, F and M proteins) and 146 small molecule inhibitors (against F, G, M, N, and P proteins). The computations include extensive homology/ab initio modeling, peptide design and small molecule docking.
View Article and Find Full Text PDF