Antimicrobial resistance (AMR) is a global threat fueled by incorrect (and overuse) of antibiotic drugs, giving rise to the evolution of multi- and extreme drug-resistant bacterial strains. The longer time to antibiotic administration (TTA) associated with the gold standard bacterial culture method has been responsible for the empirical usage of antibiotics and is a key factor in the rise of AMR. While polymerase chain reaction (PCR) and other nucleic acid amplification methods are rapidly replacing traditional culture methods, their scope has been restricted mainly to detect genotypic determinants of resistance and provide little to no information on phenotypic susceptibility to antibiotics.
View Article and Find Full Text PDFIntroduction: The pathophysiological increase in microvascular permeability plays a well-known role in the onset and progression of diseases like sepsis and atherosclerosis. However, how interactions between neutrophils and the endothelium alter vessel permeability is often debated.
Methods: In this study, we introduce a microfluidic, silicon-membrane enabled vascular mimetic (μSiM-MVM) for investigating the role of neutrophils in inflammation-associated microvascular permeability.
Selective cellular transmigration across the microvascular endothelium regulates innate and adaptive immune responses, stem cell localization, and cancer cell metastasis. Integration of traditional microporous membranes into microfluidic vascular models permits the rapid assay of transmigration events but suffers from poor reproduction of the cell permeable basement membrane. Current microporous membranes in these systems have large nonporous regions between micropores that inhibit cell communication and nutrient exchange on the basolateral surface reducing their physiological relevance.
View Article and Find Full Text PDFSilicon nanomembranes are ultrathin, highly permeable, optically transparent and biocompatible substrates for the construction of barrier tissue models. Trans-epithelial/endothelial electrical resistance (TEER) is often used as a non-invasive, sensitive and quantitative technique to assess barrier function. The current study characterizes the electrical behavior of devices featuring silicon nanomembranes to facilitate their application in TEER studies.
View Article and Find Full Text PDFMicrofluidic systems are powerful tools for cell biology studies because they enable the precise addition and removal of solutes in small volumes. However, the fluid forces inherent in the use of microfluidics for cell cultures are sometimes undesirable. An important example is chemotaxis systems where fluid flow creates well-defined and steady chemotactic gradients but also pushes cells downstream.
View Article and Find Full Text PDFThe development of wearable or implantable technologies that replace center-based hemodialysis (HD) hold promise to improve outcomes and quality of life for patients with ESRD. A prerequisite for these technologies is the development of highly efficient membranes that can achieve high toxin clearance in small-device formats. Here we examine the application of the porous nanocrystalline silicon (pnc-Si) to HD.
View Article and Find Full Text PDF