Multiple intravenous contrast phases of CT scans are commonly used in clinical practice to facilitate disease diagnosis. However, contrast phase information is commonly missing or incorrect due to discrepancies in CT series descriptions and imaging practices. This work aims to develop a classification algorithm to automatically determine the contrast phase of a CT scan.
View Article and Find Full Text PDFProc (IEEE Int Conf Healthc Inform)
June 2024
In radiology, Artificial Intelligence (AI) has significantly advanced report generation, but automatic evaluation of these AI-produced reports remains challenging. Current metrics, such as Conventional Natural Language Generation (NLG) and Clinical Efficacy (CE), often fall short in capturing the semantic intricacies of clinical contexts or overemphasize clinical details, undermining report clarity. To overcome these issues, our proposed method synergizes the expertise of professional radiologists with Large Language Models (LLMs), like GPT-3.
View Article and Find Full Text PDFRationale And Objectives: Multi-parametric MRI (mpMRI) studies of the body are routinely acquired in clinical practice. However, a standardized naming convention for MRI protocols and series does not exist currently. Conflicts in the series descriptions present in the DICOM headers arise due to myriad MRI scanners from various manufacturers used for imaging, wide variations in imaging practices across institutions, and technologist preferences.
View Article and Find Full Text PDFRationale And Objectives: In the United States, cirrhosis was the 12th leading cause of death in 2016. Despite end-stage cirrhosis being irreversible, earlier stages of hepatic fibrosis can be reversed via early diagnosis and intervention. The objective is to investigate the utility of a fully automated technique to measure liver surface nodularity (LSN) for staging hepatic fibrosis (stages F0-F4).
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
February 2024
Precise deformable image registration of multi-parametric MRI sequences is necessary for radiologists in order to identify abnormalities and diagnose diseases, such as prostate cancer and lymphoma. Despite recent advances in unsupervised learning-based registration, volumetric medical image registration that requires considering the variety of data distributions is still challenging. To address the problem of multi-parametric MRI sequence data registration, we propose an unsupervised domain-transported registration method, called OTMorph by employing neural optimal transport that learns an optimal transport plan to map different data distributions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2024
Multi-parametric magnetic resonance imaging (mpMRI) exams have various series types acquired with different imaging protocols. The DICOM headers of these series often have incorrect information due to the sheer diversity of protocols and occasional technologist errors. To address this, we present a deep learning-based classification model to classify 8 different body mpMRI series types so that radiologists read the exams efficiently.
View Article and Find Full Text PDFDeformable image registration is one of the essential processes in analyzing medical images. In particular, when diagnosing abdominal diseases such as hepatic cancer and lymphoma, multi-domain images scanned from different modalities or different imaging protocols are often used. However, they are not aligned due to scanning times, patient breathing, movement, etc.
View Article and Find Full Text PDFComput Med Imaging Graph
September 2024
Background: Segmentation of organs and structures in abdominal MRI is useful for many clinical applications, such as disease diagnosis and radiotherapy. Current approaches have focused on delineating a limited set of abdominal structures (13 types). To date, there is no publicly available abdominal MRI dataset with voxel-level annotations of multiple organs and structures.
View Article and Find Full Text PDFMulti-parametric MRI (mpMRI) studies are widely available in clinical practice for the diagnosis of various diseases. As the volume of mpMRI exams increases yearly, there are concomitant inaccuracies that exist within the DICOM header fields of these exams. This precludes the use of the header information for the arrangement of the different series as part of the radiologist's hanging protocol, and clinician oversight is needed for correction.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2024
Purpose: Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymptomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator tool.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
August 2024
Purpose: Lymph nodes (LNs) in the chest have a tendency to enlarge due to various pathologies, such as lung cancer or pneumonia. Clinicians routinely measure nodal size to monitor disease progression, confirm metastatic cancer, and assess treatment response. However, variations in their shapes and appearances make it cumbersome to identify LNs, which reside outside of most organs.
View Article and Find Full Text PDFCoronary artery calcification (CAC) is a strong and independent predictor of cardiovascular disease (CVD). However, manual assessment of CAC often requires radiological expertise, time, and invasive imaging techniques. The purpose of this multicenter study is to validate an automated cardiac plaque detection model using a 3D multiclass nnU-Net for gated and non-gated non-contrast chest CT volumes.
View Article and Find Full Text PDFThe skeletal region is one of the common sites of metastatic spread of cancer in the breast and prostate. CT is routinely used to measure the size of lesions in the bones. However, they can be difficult to spot due to the wide variations in their sizes, shapes, and appearances.
View Article and Find Full Text PDFMulti-parametric MRI of the body is routinely acquired for the identification of abnormalities and diagnosis of diseases. However, a standard naming convention for the MRI protocols and associated sequences does not exist due to wide variations in imaging practice at institutions and myriad MRI scanners from various manufacturers being used for imaging. The intensity distributions of MRI sequences differ widely as a result, and there also exists information conflicts related to the sequence type in the DICOM headers.
View Article and Find Full Text PDFMed Image Comput Comput Assist Interv
October 2023
Despite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.
View Article and Find Full Text PDFReliable localization of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies plays a major role in the assessment of lymphadenopathy and staging of metastatic disease. Radiologists routinely measure the nodal size in order to distinguish benign from malignant nodes, which require subsequent cancer staging. However, identification of lymph nodes is a cumbersome task due to their myriad appearances in mpMRI studies.
View Article and Find Full Text PDFPurpose: Body composition measurements from routine abdominal CT can yield personalized risk assessments for asymptomatic and diseased patients. In particular, attenuation and volume measures of muscle and fat are associated with important clinical outcomes, such as cardiovascular events, fractures, and death. This study evaluates the reliability of an Internal tool for the segmentation of muscle and fat (subcutaneous and visceral) as compared to the well-established public TotalSegmentator tool.
View Article and Find Full Text PDFComput Med Imaging Graph
March 2024
Segmentation of multiple pelvic structures in MRI volumes is a prerequisite for many clinical applications, such as sarcopenia assessment, bone density measurement, and muscle-to-fat volume ratio estimation. While many CT-specific datasets and automated CT-based multi-structure pelvis segmentation methods exist, there are few MRI-specific multi-structure segmentation methods in literature. In this pilot work, we propose a lightweight and annotation-free pipeline to synthetically translate T2 MRI volumes of the pelvis to CT, and subsequently leverage an existing CT-only tool called TotalSegmentator to segment 8 pelvic structures in the generated CT volumes.
View Article and Find Full Text PDFDespite the reduction in turn-around times in radiology reporting with the use of speech recognition software, persistent communication errors can significantly impact the interpretation of radiology reports. Pre-filling a radiology report holds promise in mitigating reporting errors, and despite multiple efforts in literature to generate comprehensive medical reports, there lacks approaches that exploit the longitudinal nature of patient visit records in the MIMIC-CXR dataset. To address this gap, we propose to use longitudinal multi-modal data, i.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
January 2024
Purpose: Reliable measurement of lymph nodes (LNs) in multi-parametric MRI (mpMRI) studies of the body plays a major role in the assessment of lymphadenopathy and staging of metastatic disease. Previous approaches do not adequately exploit the complementary sequences in mpMRI to universally detect and segment lymph nodes, and they have shown fairly limited performance.
Methods: We propose a computer-aided detection and segmentation pipeline to leverage the T2 fat-suppressed (T2FS) and diffusion-weighted imaging (DWI) series from a mpMRI study.
Int J Comput Assist Radiol Surg
February 2023
Purpose: Identification of lymph nodes (LNs) that are suspicious for metastasis in T2 Magnetic Resonance Imaging (MRI) is critical for assessment of lymphadenopathy. Prior work on LN detection has been limited to specific anatomical regions of the body (pelvis, rectum). Therefore, an approach to universally detect both benign and metastatic nodes in T2 MRI studies of the body is highly desirable.
View Article and Find Full Text PDF