Hematopoietic stem cells (HSCs) are produced by a small cohort of hemogenic endothelial cells (ECs) during development through the formation of intra-aortic hematopoietic cell (HC) clusters. The Runx1 transcription factor plays a key role in the EC-to-HC and -HSC transition. We show that Runx1 expression in hemogenic ECs and the subsequent initiation of HC formation are tightly controlled by the subaortic mesenchyme, although the mesenchyme is not a source of HCs.
View Article and Find Full Text PDFSince the era of the ancient Egyptians and Greeks, the avian embryo has been a subject of intense interest to visualize the first steps of development. It has served as a pioneer model to scrutinize the question of hematopoietic development from the beginning of the 20th century. It's large size and easy accessibility have permitted the development of techniques dedicated to following the origins and fates of different cell populations.
View Article and Find Full Text PDFVertebrate embryo somite formation is temporally controlled by the cyclic expression of somitogenesis clock genes in the presomitic mesoderm (PSM). The somitogenesis clock is believed to be an intrinsic property of this tissue, operating independently of embryonic midline structures and the signaling molecules produced therein, namely Sonic hedgehog (Shh). This work revisits the notochord signaling contribution to temporal control of PSM segmentation by assessing the rate and number of somites formed and somitogenesis molecular clock gene expression oscillations upon notochord ablation.
View Article and Find Full Text PDFImaging has always been a part of dental implant procedures from its beginning. Initially, imaging was performed by dentists. The introduction of CT scan at the end of the seventies was revolutionary.
View Article and Find Full Text PDFNeural crest cells (NCCs) arising from trunk neural tube (NT) during primary and secondary neurulation give rise to melanocytes, glia and neurons, except for those in the caudal-most region during secondary neurulation (somites 47 to 53 in the chick embryo), from which no neurons are formed, either in vivo or in vitro. To elucidate this discrepancy, we have specifically analyzed caudal-most NCC ontogeny. In this region, NCCs emerge at E5/HH26, one day after full cavitation of the NT and differentiation of flanking somites.
View Article and Find Full Text PDFIn the prospective lumbo-sacral region of the chick embryo, neurulation is achieved by cavitation of the medullary cord, a process called secondary neurulation. Neural crest cells (NCC) are generated in this region and they give rise to the same types of derivatives as in more rostral parts of the trunk where neurulation occurs by dorsal fusion of the neural plate borders (primary neurulation). However, no molecular data were available concerning the different steps of their ontogeny.
View Article and Find Full Text PDFBackground: In vertebrates, the skeletal elements of the jaw, together with the connective tissues and tendons, originate from neural crest cells, while the associated muscles derive mainly from cranial mesoderm. Previous studies have shown that neural crest cells migrate in close association with cranial mesoderm and then circumscribe but do not penetrate the core of muscle precursor cells of the branchial arches at early stages of development, thus defining a sharp boundary between neural crest cells and mesodermal muscle progenitor cells. Tendons constitute one of the neural crest derivatives likely to interact with muscle formation.
View Article and Find Full Text PDFPrevious studies have shown that Sonic Hedgehog (Shh) signaling is crucial for the development of the first branchial arch (BA1) into a lower-jaw in avian and mammalian embryos. We have already shown that if Shh expression is precociously inhibited in pharyngeal endoderm, neural crest cells migrate to BA1 but fail to survive, and Meckel's cartilage and associated structures do not develop. This phenotype can be rescued by addition of an exogenous source of Shh.
View Article and Find Full Text PDFWe have investigated the role of Sonic hedgehog (Shh) in the development of facial structures by depriving chicken embryos of the most anterior sources of this morphogen, including the prechordal plate and the anterior ventral endoderm of the foregut, before the onset of neural crest cell (NCC) migration to the first branchial arch (BA1). The entire forehead, including the foregut endoderm, was removed at 5- to 10-somite stage (ss), which led to the absence of the lower jaw when the operation was performed before 7-ss. If the embryos were deprived of their forehead at 8- to 10-ss, they were later on endowed with a lower beak.
View Article and Find Full Text PDFIntra-aortic haematopoiesis is a transient phenomenon, present in all the vertebrate species examined. Aorta-associated haematopoiesis produces Haematopoietic Stem Cells (HSC) that emerge from the ventral aortic endothelium through endothelial cells (EC) that switch to HSC. HSC emergence is followed by the colonization of definitive haematopoietic organs.
View Article and Find Full Text PDFWe have previously shown that endothelial cells of the aortic floor give rise to hematopoietic cells, revealing the existence of an aortic hemangioblast. It has been proposed that the restriction of hematopoiesis to the aortic floor is based on the existence of two different and complementary endothelial lineages that form the vessel: one originating from the somite would contribute to the roof and sides, another from the splanchnopleura would contribute to the floor. Using quail/chick orthotopic transplantations of paraxial mesoderm, we have traced the distribution of somite-derived endothelial cells during aortic hematopoiesis.
View Article and Find Full Text PDFElectroencephalographic characteristics and clinical symptoms of an avian genetic reflex epilepsy have been transferred from Fayoumi epileptic (Fepi) chickens to non-epileptic chickens by embryonic homotopic grafts of brain neuroepithelium. Transplanted tissues belonging to the prosencephalic vesicle transferred epileptic electrical features while tissues from the mesencephalic vesicle were responsible for seizure motor manifestations of the disease. Thus each of these tissues can express their own specificity when grafted separately in a normal host, but they co-operate to produce the complete epileptic phenotype when grafted together.
View Article and Find Full Text PDFMalformations affecting the nervous system in humans are numerous and various in etiology. Many are due to genetic deficiencies or mechanical accidents occurring at early stages of development. It is thus of interest to reproduce such human malformations in animal models.
View Article and Find Full Text PDFThe Fayoumi strain of chickens (Fepi) carries a recessive autosomal gene mutation in which homozygotes are afflicted with a photogenic and audiogenic reflex epilepsy. Seizures consist of stimulus-locked motor symptoms followed by generalized self sustained convulsions. EEG recordings show spikes and spike and waves patterns at rest which are suppressed during seizures and replaced by a desynchronized pattern of activity.
View Article and Find Full Text PDFDuring early development in vertebrates, Sonic hedgehog (Shh) is produced by the notochord and the floor plate. A ventrodorsal gradient of Shh directs ventrodorsal patterning of the neural tube. However, Shh is also required for the survival of neuroepithelial cells.
View Article and Find Full Text PDFMolecular analysis carried out on quail-chick chimeras, in which quail Hensen's node was substituted for its chick counterpart at the five- to six-somite stage (ss), showed that the floor plate of the avian neural tube is composed of distinct areas: (1) a median one (medial floor plate or MFP) derived from Hensen's node and characterised by the same gene expression pattern as the node cells (i.e. expression of HNF3beta and Shh to the exclusion of genes early expressed in the neural ectoderm such as CSox1); and (2) lateral regions that are differentiated from the neuralised ectoderm (CSox1 positive) and form the lateral floor plate (LFP).
View Article and Find Full Text PDFIn vertebrates, tendons connect muscles to skeletal elements. Surgical experiments in the chick have underlined developmental interactions between tendons and muscles. Initial formation of tendons occurs autonomously with respect to muscle.
View Article and Find Full Text PDFIn the vertebrate embryo, segmentation is built on repetitive structures, named somites, which are formed progressively from the most rostral part of presomitic mesoderm, every 90 minutes in the avian embryo. The discovery of the cyclic expression of several genes, occurring every 90 minutes in each presomitic cell, has shown that there is a molecular clock linked to somitogenesis. We demonstrate that a dynamic expression pattern of the cycling genes is already evident at the level of the prospective presomitic territory.
View Article and Find Full Text PDFIn vertebrates the neural tube, like most of the embryonic organs, shows discreet areas of programmed cell death at several stages during development. In the chick embryo, cell death is dramatically increased in the developing nervous system and other tissues when the midline cells, notochord and floor plate, are prevented from forming by excision of the axial-paraxial hinge (APH), i.e.
View Article and Find Full Text PDFTo investigate the origin and nature of the signals responsible for specification of the dermatomal lineage, excised axial organs in 2-day-old chick embryos were replaced by grafts of the dorsal neural tube, or the ventral neural tube plus the notochord, or aggregates of cells engineered to produce Sonic hedgehog (Shh), Noggin, BMP-2, Wnt-1, or Wnt-3a. By E10, grafts of the ventral neural tube plus notochord or of cells producing Shh led to differentiation of cartilage and muscles, and an impaired dermis derived from already segmented somites. In contrast, grafts of the dorsal neural tube, or of cells producing Wnt-1, triggered the formation of a feather-inducing dermis.
View Article and Find Full Text PDFHensen's node is the gastrulation center in the avian embryo. It is the homologue of the amphibian dorsal blastopore lip and the zebrafish shield. It contains the progeny of all midline cells (floor plate of the neural tube, notochord and dorsal endoderm).
View Article and Find Full Text PDFHensen's node, also called the chordoneural hinge in the tail bud, is a group of cells that constitutes the organizer of the avian embryo and that expresses the gene HNF-3(&bgr;). During gastrulation and neurulation, it undergoes a rostral-to-caudal movement as the embryo elongates. Labeling of Hensen's node by the quail-chick chimera system has shown that, while moving caudally, Hensen's node leaves in its wake not only the notochord but also the floor plate and a longitudinal strand of dorsal endodermal cells.
View Article and Find Full Text PDF