Publications by authors named "Teijiro Aso"

Alzheimer's disease (AD) is a progressive neurodegenerative disease caused by accumulations of Aβ peptides. Production and fibrillation of Aβ are downregulated by BRI2 and BRI3, which are physiological inhibitors of amyloid precursor protein (APP) processing and Aβ oligomerization. Here, we identify nuclear receptor binding protein 1 (NRBP1) as a substrate receptor of a Cullin-RING ubiquitin ligase (CRL) that targets BRI2 and BRI3 for degradation.

View Article and Find Full Text PDF

Elongin A performs dual functions as the transcriptionally active subunit of RNA polymerase II (Pol II) elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that ubiquitylates Pol II in response to DNA damage. Assembly of the Elongin A ubiquitin ligase and its recruitment to sites of DNA damage is a tightly regulated process induced by DNA-damaging agents and α-amanitin, a drug that induces Pol II stalling. In this study, we demonstrate (i) that Elongin A and the ubiquitin ligase subunit CUL5 associate in cells with the Cockayne syndrome B (CSB) protein and (ii) that this interaction is also induced by DNA-damaging agents and α-amanitin.

View Article and Find Full Text PDF

Elongin A performs dual functions in cells as a component of RNA polymerase II (Pol II) transcription elongation factor Elongin and as the substrate recognition subunit of a Cullin-RING E3 ubiquitin ligase that has been shown to target Pol II stalled at sites of DNA damage. Here we investigate the mechanism(s) governing conversion of the Elongin complex from its elongation factor to its ubiquitin ligase form. We report the discovery that assembly of the Elongin A ubiquitin ligase is a tightly regulated process.

View Article and Find Full Text PDF

Elongin A was shown previously to be capable of potently activating the rate of RNA polymerase II (RNAPII) transcription elongation in vitro by suppressing transient pausing by the enzyme at many sites along DNA templates. The role of Elongin A in RNAPII transcription in mammalian cells, however, has not been clearly established. In this report, we investigate the function of Elongin A in RNAPII transcription.

View Article and Find Full Text PDF

Elongin A increases the rate of RNA polymerase II (pol II) transcript elongation by suppressing transient pausing by the enzyme. Elongin A also acts as a component of a cullin-RING ligase that can target stalled pol II for ubiquitylation and proteasome-dependent degradation. It is not known whether these activities of Elongin A are functionally interdependent in vivo.

View Article and Find Full Text PDF

Cyclin-dependent kinase inhibitor p21Cip1 plays a crucial role in regulating cell cycle arrest and differentiation. It is known that p21Cip1 increases during terminal differentiation of cardiomyocytes, but its expression control and biological roles are not fully understood. Here, we show that the p21Cip1 protein is stabilized in cardiomyocytes after mitogenic stimulation, due to its increased CDK2 binding and inhibition of ubiquitylation.

View Article and Find Full Text PDF

The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II (pol II) by suppressing transient pausing of the pol II at many sites along the DNA. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, which can form an isolable Elongin BC subcomplex. Here, we have shown that both the ubiquitylation and proteasomal degradation of the largest subunit of pol II (Rpb1) following UV-irradiation are significantly suppressed in Elongin A-deficient cells; however, in both cases suppression is rescued by transfection of wild-type Elongin A.

View Article and Find Full Text PDF

The tumor suppressor von Hippel-Lindau (VHL) gene product forms a complex with elongin B and elongin C, and acts as a recognition subunit of a ubiquitin E3 ligase. Interactions between components in the complex were investigated in living cells by fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM). Elongin B-cerulean or cerulean-elongin B was coexpressed with elongin C-citrine or citrine-elongin C in CHO-K1 cells.

View Article and Find Full Text PDF

Elongin A is the transcriptionally active subunit of the Elongin complex that strongly stimulates the rate of elongation by RNA polymerase II (pol II) by suppressing the transient pausing of the polymerase at many sites along the DNA template. We have recently shown that Elongin A-deficient mice are embryonic lethal, and mouse embryonic fibroblasts (MEFs) derived from Elongin A(-/-) embryos display not only increased apoptosis but also senescence-like phenotypes accompanied by the activation of p53. To further understand the function of Elongin A in vivo, we have carried out the structure-function analysis of Elongin A and identified sequences critical to its nuclear localization and direct interaction with pol II.

View Article and Find Full Text PDF

The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit, and two positive regulatory B and C subunits. Although the NH(2)-terminal approximately 120 amino acid region of Elongin A is dispensable for its transcriptional activity in vitro, it shares significant sequence similarity with the NH(2)-terminus of other class of transcription factors SII and CRSP70, suggesting that the NH(2)-terminus mediates interactions important for the regulation of transcription in vivo.

View Article and Find Full Text PDF

Elongin A is a transcription elongation factor that increases the overall rate of mRNA chain elongation by RNA polymerase II. To investigate the function of Elongin A in vivo, the two alleles of the Elongin A gene have been disrupted by homologous recombination in murine embryonic stem (ES) cells. The Elongin A-deficient ES cells are viable, but show a slow growth phenotype because they undergo a delayed mitosis.

View Article and Find Full Text PDF

The Elongin complex stimulates the rate of transcription elongation by RNA polymerase II by suppressing the transient pausing of the polymerase at many sites along the DNA template. Elongin is composed of a transcriptionally active A subunit and two small regulatory B and C subunits, the latter binding stably to each other to form a binary complex that interacts with Elongin A and strongly induces its transcriptional activity. To further understand the role of Elongin A in transcriptional regulation by RNA polymerase II, we are attempting to identify Elongin A-related proteins.

View Article and Find Full Text PDF