Publications by authors named "Teija Peura"

Gavi is intended for use in a laboratory or clinic environment for the preparation and vitrification of oocytes, cleavage stage embryos and blastocysts. Gavi is designed to automate the equilibration steps in the vitrification process to minimize the variability that occurs during cryopreservation. This automated process reduces the potential for errors and ensures a standardized, repeatable procedure for vitrification in a controlled, closed-system environment.

View Article and Find Full Text PDF

Embryonic stem cells (ESCs) represent a mainstay for pluripotent stem cell research and development (R&D) and provide tangible opportunities for clinical translation including cell therapies and drug discovery. Moreover, in spite of the discovery of induced pluripotent stem cells (iPSCs), ESCs are an essential reference point, against which other pluripotent cells are compared. Hence, there is an ongoing need to derive and bank quality-controlled research-grade and clinical-grade ESC lines using established and standardized methods.

View Article and Find Full Text PDF

The Genea017 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 40 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, genetic analysis confirmed a 46, XY karyotype and male allele pattern through CGH and STR analysis. The hESC line had pluripotent cell morphology, 87% of cells expressed Nanog, 95% Oct4, 88% Tra1-60 and 99% SSEA4, gave a PluriTest pluripotency score of 34.

View Article and Find Full Text PDF

The Genea022 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea022 was demonstrated with 84% of cells expressed Nanog, 98% Oct4, 55% Tra1-60 and 97% SSEA4, gave a Pluritest Pluripotency score of 42.

View Article and Find Full Text PDF

The Genea023 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype and male allele pattern through CGH and STR analysis. Pluripotency of Genea023 was demonstrated with 85% of cells expressed Nanog, 98% Oct4, 55% Tra1-60 and 98% SSEA4, gave a Pluritest Pluripotency score of 42.

View Article and Find Full Text PDF

The Genea020 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 48 repeats, indicative of Huntington disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female allele pattern. The hESC line had pluripotent cell morphology, 89% of cells expressed Nanog, 95% Oct4, 29% Tra1-60 and 99% SSEA4, gave a Pluritest pluripotency score of 27.

View Article and Find Full Text PDF

The Genea018 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Htt gene CAG expansion of 46 repeats, indicative of Huntington Disease. Following ICM outgrowth on inactivated human feeders, karyotype was confirmed as 46, XX by CGH and STR analysis demonstrated a female Allele pattern. The hESC line had pluripotent cell morphology, 75% of cells expressed Nanog, 91% Oct4, 73% Tra1-60 and 96% SSEA4, gave a Pluritest pluripotency score of 31.

View Article and Find Full Text PDF

The Genea021 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, carrying Trisomy 21, indicative of Down Syndrome. Following ICM outgrowth on inactivated human feeders, CGH and STR analyses demonstrated a 47, XY, +21 karyotype and male allele pattern. The hESC line had pluripotent cell morphology, 71% of cells expressed Nanog, 84% Oct4, 23% Tra1-60 and 95% SSEA4, gave a Pluritest Pluripotency score of 21.

View Article and Find Full Text PDF

The Genea019 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype, female Allele pattern and unaffected Htt CAG repeat length, compared to HD affected sibling Genea020. Pluripotency of Genea019 was demonstrated with 75% of cells expressing Nanog, 89% Oct4, 48% Tra1-60 and 85% SSEA4, a Pluritest Pluripotency score of 22.

View Article and Find Full Text PDF

The Genea002 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XY karyotype by CGH and male Allele pattern through STR analysis. Pluripotency of Genea002 was demonstrated with 75% of cells expressing Nanog, 93% Oct4, 83% Tra1-60 and 98% SSEA4, a Pluritest pluripotency score of 24.

View Article and Find Full Text PDF

The Genea016 human embryonic stem cell line was derived from a donated, fully commercially consented ART blastocyst, through ICM outgrowth on inactivated human feeders. The line showed pluripotent cell morphology and genomic analysis verified a 46, XX karyotype and female Allele pattern through traditional karyotyping, CGH and STR analysis. Pluripotency of Genea016 was demonstrated with 77% of cells expressing Nanog, 95% Oct4, 53% Tra1-60 and 98% SSEA4, a PluriTest Pluripotency score of 28.

View Article and Find Full Text PDF

Study Question: Can the equilibration steps prior to embryo vitrification be automated?

Summary Answer: We have developed the 'Gavi' system which automatically performs equilibration steps before closed system vitrification on up to four embryos at a time and gives in vitro outcomes equivalent to the manual Cryotop method.

What Is Known Already: Embryo cryopreservation is an essential component of a successful assisted reproduction clinic, with vitrification providing excellent embryo survival and pregnancy outcomes. However, vitrification is a manual, labour-intensive and highly skilled procedure, and results can vary between embryologists and clinics.

View Article and Find Full Text PDF

Human embryonic stem cells are pluripotent cells typically derived from blastulating embryos that have become excess to clinical needs in assisted reproduction programs. They provide cellular models for embryonic development and disease, and are thought to be useful for future cell replacement therapies and regenerative medicine. Here we describe methods to derive human embryonic stem cell lines.

View Article and Find Full Text PDF

Routine IVF practices result in the discarding of a significant proportion of embryos due to their unsuitability for transfer or cryopreservation. The present study plated clinically unusable human blastocysts to derive cellular outgrowths for aneuploidy studies and genome-wide analysis of DNA copy number variations, and to evaluate their potential as a source for pluripotent stem cells. Just 79 cellular outgrowths were obtained from 1026 abnormal blastocysts (7.

View Article and Find Full Text PDF

Down syndrome (DS) is the most frequent cause of human congenital mental retardation. Cognitive deficits in DS result from perturbations of normal cellular processes both during development and in adult tissues, but the mechanisms underlying DS etiology remain poorly understood. To assess the ability of induced pluripotent stem cells (iPSCs) to model DS phenotypes, as a prototypical complex human disease, we generated bona fide DS and wild-type (WT) nonviral iPSCs by episomal reprogramming.

View Article and Find Full Text PDF

This unit describes generation of human embryonic stem cell lines from early human embryos. The focus is on actual handling of embryos and early embryonic outgrowths, omitting steps required for actual generation, freezing, and thawing of embryos, as well as further culture and characterization of newly derived stem cells. Hence, the initial culture of embryos to a blastocyst stage is described, followed by removal of the protective zona pellucida layer, isolation of the inner cell mass (ICM), subsequent plating of ICM or whole embryo and, finally, the first few passages of an early embryonic outgrowth.

View Article and Find Full Text PDF

Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by an expansion of cytosine-adenine-guanine (CAG) repeats in the Huntingtin gene Htt. To facilitate research into HD, we have derived 4 human embryonic stem cell (hESC) lines containing ≥ 40 CAG repeats in exon 1 of Htt: SIVF017-HD (CAG₄₀), SIVF018-HD (CAG₄₆), SIVF020-HD (CAG₄₈), and SIVF046-HD (CAG₄₅). Additionally, we have derived a normal sibling-matched control for SIVF020-HD, cell line SIVF019.

View Article and Find Full Text PDF

Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal.

View Article and Find Full Text PDF

Human embryonic stem cell lines are usually derived from human embryos that have become excess to clinical needs in assisted reproduction programs, whether because the couple in question has completed their family or because the embryo was found to be clinically unsuitable for transfer due to severe genetic condition (in case of pre-implantation genetic diagnosis, PGD). Culturing embryos to a blastocyst stage (5-6 days after IVF) before embryo transfer or cryopreservation instead of earlier commonly used 8-cell stage (3 days after IVF) calls for new methods for embryo cryopreservation and allows higher efficiencies for the actual stem cell derivation. Despite the vast advances in other fields of embryonic stem cell research, methods for derivation of new lines have not changed much over the years, mainly due to scarcity of embryos limiting experimentation.

View Article and Find Full Text PDF

Background: The ovarian follicular basal lamina underlies the epithelial membrana granulosa and maintains the avascular intra-follicular compartment. Additional layers of basal lamina occur in a number of pathologies, including pili annulati and diabetes. We previously found additional layers of follicular basal lamina in a significant percentage of healthy bovine follicles.

View Article and Find Full Text PDF

Although a normal karyotype is generally a requirement for stem cell lines, new applications are likely to emerge for stem cells with defined chromosomal aneuploidies. We therefore investigated the use of embryos found to be aneuploid on biopsy followed by preimplantation genetic diagnosis (PGD) with fluorescent in situ hybridization (FISH), and developmentally arrested embryos for stem cell derivation. Eleven stem cell lines were obtained from 41 embryos in 36 cultures, with higher success rate achieved from PGD-analyzed, developmentally advanced embryos (45%) than from clinically unsuitable non-PGD embryos (13%).

View Article and Find Full Text PDF

This study was carried out to determine the telomere length status of sheep clones and their offspring, and to examine telomere dynamics and chromosomal abnormalities in culture propagated donor cells. Skin samples were collected from somatic cell nuclear transfer-derived sheep clones, and three of their progeny generated by natural mating. Samples were collected from control animals (n = 35), spanning in age from 1 month to 36 months of age.

View Article and Find Full Text PDF

Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently.

View Article and Find Full Text PDF

The purpose of the present study was to find an efficient and reliable chemically assisted procedure for enucleation related to the handmade cloning (HMC) technique. After in vitro maturation oocytes were incubated in 0.5 microg mL(-1) demecolcine for 2 h.

View Article and Find Full Text PDF