Novel acyl-coenzyme A:cholesterol acyltransferase inhibitor pactimibe has been evaluated in vivo; it exhibited significant serum cholesterol lowering activities in hamsters and monkeys without affecting non-high density lipoprotein cholesterol levels. The mechanism of the hypocholesterolemic action of pactimibe was examined in normocholesterolemic hamsters in this study. Results with the dual-isotope plasma ratio method indicated that pactimibe inhibits cholesterol absorption from the intestine, reduces cholesteryl ester formation in the liver, and enhances its elimination from the body.
View Article and Find Full Text PDFPactimibe sulfate, [7-(2,2-dimethylpropanamido)-4,6-dimethyl-1-octylindolin-5-yl]acetic acid hemisulfate, a novel Acyl-coenzyme A:cholesterol acyltransferase (ACAT) inhibitor, was investigated in vitro and in vivo to characterize its potential. Pactimibe exhibited dual inhibition for ACAT1 and ACAT2 (concentrations inhibiting 50% [IC50s] at micromolar levels) more potently than avasimibe. Kinetic analysis revealed pactimibe is a noncompetitive inhibitor of oleoyl-CoA (Ki value: 5.
View Article and Find Full Text PDFNovel acyl coenzyme A:cholesterol acyltransferase (ACAT) inhibitor pactimibe was administered as the sulfate salt form to 3-month-old homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits at doses of 0, 10, or 30 mg/kg for 32 weeks. Pactimibe (10 and 30 mg/kg) tended to reduce intimal thickening in thoracic aortic lesions (294+/-39 and 276+/-32 microm, respectively, versus 313+/-37 microm control), histopathological examination revealing significantly increased smooth muscle cell area (12.0+/-0.
View Article and Find Full Text PDFNo evidence of premature vascular disease is found in apolipoprotein A-I(Milano) (apoA-I(M)) human carriers, despite very low high density lipoprotein (HDL) cholesterol levels. Whether apoA-I(M) may impart a "gain of function" in atherosclerosis protection compared to wild-type apoA-I is hotly debated. To address this question, knock-in mice expressing human apoA-I or apoA-I(M) were crossed with atherosclerosis-susceptible mice expressing the human apoB/A-II transgene (h-B/A-II/A-I(Hu/Hu) and h-B/A-II/A-I(M)(Hu/Hu)).
View Article and Find Full Text PDFIn a recent paper, we reported that pravastatin sodium (pravastatin), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme. A reductase, decreases the concentrations of low density lipoprotein (LDL) cholesterol through an LDL receptor pathway in Japanese White (JW) rabbits, whereas this agent lowers high density lipoprotein (HDL) cholesterol in a manner correlated with a reduction of very low density lipoprotein (VLDL) cholesterol secretion from the liver. In the present study, we administered pravastatin to JW rabbits at 30 mg/kg for 14 days and examined further the mechanisms for the reduction of HDL cholesterol.
View Article and Find Full Text PDFWe previously demonstrated that Irs2-/- mice develop diabetes due to beta-cell growth failure and insulin resistance; however, glucose-induced insulin secretion was increased in islets isolated from Irs2-/- mice. Pdx-1, a transcription factor important for maintenance of the beta-cell function, was recently reported to be severely reduced in Irs2-/- murine beta-cells. We report herein that Pdx-1 expression, including the amount of Pdx-1 localized in the nucleus, is not down-regulated in our Irs2-/- murine beta-cells with a C57BL/6 background.
View Article and Find Full Text PDFBackground And Objective: Troglitazone is a 2,4-thiazolidinedione antidiabetic agent with insulin-sensitizing activities. This agent had been used efficiently in a large number of patients but was withdrawn from the market in March 2000 because of its association with idiosyncratic hepatotoxicity. To address the susceptible genetic factors responsible for the hepatotoxicity associated with this agent, we performed a genetic polymorphic analysis by a target gene approach in troglitazone-treated Japanese patients with type 2 diabetes mellitus.
View Article and Find Full Text PDFIn experimental animals and humans, the concentration of serum mevalonate (MVA), a direct product of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, is considered to reflect the activity of whole-body sterol synthesis. The relationship between the concentration of serum MVA and the activity of sterol synthesis in tissues, however, has not been fully clarified. In the present study, we examined MVA metabolism by using pravastatin, a liver-selective inhibitor of HMG-CoA reductase, and common marmosets, a good model animal for studying lipid metabolism.
View Article and Find Full Text PDFPravastatin sodium (pravastatin), an inhibitor of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-CoA reductase), when orally administered to male Japanese White (JW) rabbits at 1-30 mg/kg for 21 days, decreased the concentrations of total cholesterol, low density lipoprotein (LDL)-cholesterol and high density lipoprotein (HDL)-cholesterol in a dose-dependent manner. On the other hand, pravastatin did not change the concentration of serum triglycerides and very low density lipoprotein (VLDL)-cholesterol. On day 21, LDL-cholesterol was significantly decreased at doses higher than 3 mg/kg, whereas HDL-cholesterol was significantly reduced at doses higher than 10 mg/kg.
View Article and Find Full Text PDF