In response to environmental concerns at the global level, there is considerable momentum in the exploration of materials derived from waste that are both sustainable and eco-friendly. In this study, CS-Fe (carbon, silica, and iron) composite was synthesized from coal gasification slag (CGS) and innovatively applied as a catalyst to activate PS (persulfate) for the degradation of trichloroethylene (TCE) in water. Scanning electron microscope (SEM), fourier transmission infrared spectroscopy (FTIR), energy dispersive x-ray spectroscopy (EDS), brunauer, emmet, and teller (BET) technique, and x-ray diffractometer (XRD) spectra were employed to investigate the surface morphology and physicochemical composition of the CS-Fe composite.
View Article and Find Full Text PDFRapid growth and industrialization have become a major threat to water contamination with carcinogenic chlorinated hydrocarbons such as trichloroethylene (TCE). Therefore, this study aims to assess the TCE degradation performance through advanced oxidation process (AOP) using catalyst FeS in combination with oxidants persulfate (PS), peroxymonosulfate (PMS), and hydrogen peroxide (HO) in PS/FeS, PMS/FeS, and HO/FeS systems, respectively. TCE concentration was analyzed using gas chromatography (GC).
View Article and Find Full Text PDFRapid urbanization and industrialization are regarded as the leading causes of environmental pollution, mainly aquatic pollution. This study was carried out to investigate the use of algal species Cladophora glomerata (CG) and Vaucheria debaryana (VD) as a cost-effective and environmentally friendly phycoremediators for composite industrial effluent. After the pot experimentation using algal species, a considerable decrease in electrical conductivity (EC: 49.
View Article and Find Full Text PDFGroundwater is the drinking water source for the majority of rural settlements of district Nowshera, Khyber Pakhtunkhwa, Pakistan. The study aimed to analyze the groundwater quality and its vulnerability to pollution and to develop its spatial distribution mapping. For this purpose, forty-eight groundwater samples were collected from dug wells, tube wells, and hand pumps of sixteen villages and analyzed for physicochemical parameters.
View Article and Find Full Text PDFDirective, acid and reactive dyes are the carcinogenic dyes which have complex structures and difficult to remove from the industrial wastewater. In this study, coal fly ash (CFA) was modified with HCl and NaOH solution and used for the removal of direct fast scarlet 4BS, direct sky blue 5B, acid navy blue R, and reactive turquoise blue KN-G dyes. Laboratory experiments were carried out to analyze the performance of modified coal fly ash (MCFA) to check the removal efficiency and adsorption capacity of dyes.
View Article and Find Full Text PDFAs a result of metal mining activities in Pakistan, toxic heavy metals (HMs) such as chromium (Cr) and lead (Pb) often enter the soil ecosystem, accumulate in food crops and cause serious human health and environmental issues. Therefore, this study examined the efficacy of biochar for contaminated soil remediation. Poplar wood biochar (PWB) and sugarcane bagasse biochar (SCBB) were amended to mine-contaminated agricultural soil at 3% and 7% (wt/wt) application rates.
View Article and Find Full Text PDFEnvironmentally friendly and cost-effective techniques are required to reclaim land degraded during mining activities. Bioaccumulation of heavy metals (HMs) in vegetables grown on contaminated soils can increase human health risks. The potential effects of hardwood biochar (HWB) was assessed for chromium (Cr), zinc (Zn), copper (Cu), manganese (Mn) and lead (Pb) bioavailability in mine-contaminated soils and their subsequently bioaccumulation in crops and associated health risk.
View Article and Find Full Text PDFRemediation and management of industrial wastewater (IWW) using hydrophytes act as one of the cost effective and environmentally friendly technologies. The present study was conducted to assess the role and efficiency of selected four hydrophyte species through constructed wetland (CW) for the removal of heavy metals (HMs) from IWW. Samples of wastewater (WW) were collected from the main drain of Hayatabad Industrial Estate (Peshawar, Pakistan) and analysed for HMs like cadmium (Cd), copper (Cu) and lead (Pb) along with basic physicochemical parameters like pH, electric conductivity (EC), total suspended solids (TSS), total dissolved solids (TDS), dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), dissolved organic carbon (DOC) through standard analytical methods.
View Article and Find Full Text PDF