Publications by authors named "Tehetina Woldemichael"

Purpose: Clofazimine (CFZ) is an FDA-approved, poorly soluble small molecule drug that precipitates as crystal-like drug inclusions (CLDIs) which accumulate in acidic cytoplasmic organelles of macrophages. In this study, we considered CLDIs as an expandable mechanopharmaceutical device, to study how macrophages respond to an increasingly massive load of endophagolysosomal cargo.

Methods: First, we experimentally tested how the accumulation of CFZ in CLDIs impacted different immune cell subpopulations of different organs.

View Article and Find Full Text PDF

Weakly basic, poorly soluble chemical agents could be exploited as building blocks for constructing sophisticated molecular devices inside the cells of living organisms. Here, using experimental and computational approaches, we probed the relationship between the biological mechanisms mediating lysosomal ion homeostasis and the self-assembly of a weakly basic small molecule building block (clofazimine) into a functional, mechanopharmaceutical device (intracellular Crystal-Like Drug Inclusions - "CLDIs") in macrophage lysosomes. Physicochemical considerations indicate that the intralysosomal stabilization of the self-assembled mechanopharmaceutical device depends on the pH of the weakly basic building block and its affinity for chloride, both of which are consistent with the pH and chloride content of a physiological lysosomal microenvironment.

View Article and Find Full Text PDF

Many weakly basic, lipophilic drugs accumulate in lysosomes and exert complex, pleiotropic effects on organelle structure and function. Thus, modeling how perturbations of lysosomal physiology affect the maintenance of lysosomal ion homeostasis is necessary to elucidate the key factors which determine the toxicological effects of lysosomotropic agents, in a cell-type dependent manner. Accordingly, a physiologically-based mathematical modeling and simulation approach was used to explore the dynamic, multi-parameter phenomenon of lysosomal stress.

View Article and Find Full Text PDF