Entropy (Basel)
December 2024
Can we turn AI black boxes into code? Although this mission sounds extremely challenging, we show that it is not entirely impossible by presenting a proof-of-concept method, MIPS, that can synthesize programs based on the automated mechanistic interpretability of neural networks trained to perform the desired task, auto-distilling the learned algorithm into Python code. We test MIPS on a benchmark of 62 algorithmic tasks that can be learned by an RNN and find it highly complementary to GPT-4: MIPS solves 32 of them, including 13 that are not solved by GPT-4 (which also solves 30). MIPS uses an integer autoencoder to convert the RNN into a finite state machine, then applies Boolean or integer symbolic regression to capture the learned algorithm.
View Article and Find Full Text PDFIt has been an open question in deep learning if fault-tolerant computation is possible: can arbitrarily reliable computation be achieved using only unreliable neurons? In the grid cells of the mammalian cortex, analog error correction codes have been observed to protect states against neural spiking noise, but their role in information processing is unclear. Here, we use these biological error correction codes to develop a universal fault-tolerant neural network that achieves reliable computation if the faultiness of each neuron lies below a sharp threshold; remarkably, we find that noisy biological neurons fall below this threshold. The discovery of a phase transition from faulty to fault-tolerant neural computation suggests a mechanism for reliable computation in the cortex and opens a path towards understanding noisy analog systems relevant to artificial intelligence and neuromorphic computing.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
How do transformers model physics? Do transformers model systems with interpretable analytical solutions or do they create an "alien physics" that is difficult for humans to decipher? We have taken a step towards demystifying this larger puzzle by investigating the simple harmonic oscillator (SHO), x¨+2γx˙+ω02x=0, one of the most fundamental systems in physics. Our goal was to identify the methods transformers use to model the SHO, and to do so we hypothesized and evaluated possible methods by analyzing the encoding of these methods' intermediates. We developed four criteria for the use of a method within the simple test bed of linear regression, where our method was y=wx and our intermediate was : (1) Can the intermediate be predicted from hidden states? (2) Is the intermediate's encoding quality correlated with the model performance? (3) Can the majority of variance in hidden states be explained by the intermediate? (4) Can we intervene on hidden states to produce predictable outcomes? Armed with these two correlational (1,2), weak causal (3), and strong causal (4) criteria, we determined that transformers use known numerical methods to model the trajectories of the simple harmonic oscillator, specifically, the matrix exponential method.
View Article and Find Full Text PDFDiscovering conservation laws for a given dynamical system is important but challenging. In a theorist setup (differential equations and basis functions are both known), we propose the sparse invariant detector (SID), an algorithm that autodiscovers conservation laws from differential equations. Its algorithmic simplicity allows robustness and interpretability of the discovered conserved quantities.
View Article and Find Full Text PDFEntropy (Basel)
December 2023
We introduce Brain-Inspired Modular Training (BIMT), a method for making neural networks more modular and interpretable. Inspired by brains, BIMT embeds neurons in a geometric space and augments the loss function with a cost proportional to the length of each neuron connection. This is inspired by the idea of minimum connection cost in evolutionary biology, but we are the first the combine this idea with training neural networks with gradient descent for interpretability.
View Article and Find Full Text PDFWe explore unique considerations involved in fitting machine learning (ML) models to data with very high precision, as is often required for science applications. We empirically compare various function approximation methods and study how they with increasing parameters and data. We find that neural networks (NNs) can often outperform classical approximation methods on high-dimensional examples, by (we hypothesize) auto-discovering and exploiting modular structures therein.
View Article and Find Full Text PDFWe present a machine learning algorithm that discovers conservation laws from differential equations, both numerically (parametrized as neural networks) and symbolically, ensuring their functional independence (a nonlinear generalization of linear independence). Our independence module can be viewed as a nonlinear generalization of singular value decomposition. Our method can readily handle inductive biases for conservation laws.
View Article and Find Full Text PDFWe present an automated method for measuring media bias. Inferring which newspaper published a given article, based only on the frequencies with which it uses different phrases, leads to a conditional probability distribution whose analysis lets us automatically map newspapers and phrases into a bias space. By analyzing roughly a million articles from roughly a hundred newspapers for bias in dozens of news topics, our method maps newspapers into a two-dimensional bias landscape that agrees well with previous bias classifications based on human judgement.
View Article and Find Full Text PDFAt the heart of both lossy compression and clustering is a trade-off between the fidelity and size of the learned representation. Our goal is to map out and study the Pareto frontier that quantifies this trade-off. We focus on the optimization of the Deterministic Information Bottleneck (DIB) objective over the space of hard clusterings.
View Article and Find Full Text PDFBackground: Determining cell identity in volumetric images of tagged neuronal nuclei is an ongoing challenge in contemporary neuroscience. Frequently, cell identity is determined by aligning and matching tags to an "atlas" of labeled neuronal positions and other identifying characteristics. Previous analyses of such C.
View Article and Find Full Text PDFWe present an automated method for finding hidden symmetries, defined as symmetries that become manifest only in a new coordinate system that must be discovered. Its core idea is to quantify asymmetry as violation of certain partial differential equations, and to numerically minimize such violation over the space of all invertible transformations, parametrized as invertible neural networks. For example, our method rediscovers the famous Gullstrand-Painlevé metric that manifests hidden translational symmetry in the Schwarzschild metric of nonrotating black holes, as well as Hamiltonicity, modularity, and other simplifying traits not traditionally viewed as symmetries.
View Article and Find Full Text PDFEnergy conservation is a basic physics principle, the breakdown of which often implies new physics. This paper presents a method for data-driven "new physics" discovery. Specifically, given a trajectory governed by unknown forces, our neural new-physics detector (NNPhD) aims to detect new physics by decomposing the force field into conservative and nonconservative components, which are represented by a Lagrangian neural network (LNN) and an unconstrained neural network, respectively, trained to minimize the force recovery error plus a constant λ times the magnitude of the predicted nonconservative force.
View Article and Find Full Text PDFWe present AI Poincaré, a machine learning algorithm for autodiscovering conserved quantities using trajectory data from unknown dynamical systems. We test it on five Hamiltonian systems, including the gravitational three-body problem, and find that it discovers not only all exactly conserved quantities, but also periodic orbits, phase transitions, and breakdown timescales for approximate conservation laws.
View Article and Find Full Text PDFReciprocal copy number variations (CNVs) of 16p11.2 are associated with a wide spectrum of neuropsychiatric and neurodevelopmental disorders. Here, we use human induced pluripotent stem cells (iPSCs)-derived dopaminergic (DA) neurons carrying CNVs of 16p11.
View Article and Find Full Text PDFWe present a method for unsupervised learning of equations of motion for objects in raw and optionally distorted unlabeled synthetic video (or, more generally, for discovering and modeling predictable features in time-series data). We first train an autoencoder that maps each video frame into a low-dimensional latent space where the laws of motion are as simple as possible, by minimizing a combination of nonlinearity, acceleration, and prediction error. Differential equations describing the motion are then discovered using Pareto-optimal symbolic regression.
View Article and Find Full Text PDFThe goal of lossy data compression is to reduce the storage cost of a data set while retaining as much information as possible about something () that you care about. For example, what aspects of an image contain the most information about whether it depicts a cat? Mathematically, this corresponds to finding a mapping X → Z ≡ f ( X ) that maximizes the mutual information I ( Z , Y ) while the entropy H ( Z ) is kept below some fixed threshold. We present a new method for mapping out the Pareto frontier for classification tasks, reflecting the tradeoff between retained entropy and class information.
View Article and Find Full Text PDFA core challenge for both physics and artificial intelligence (AI) is symbolic regression: finding a symbolic expression that matches data from an unknown function. Although this problem is likely to be NP-hard in principle, functions of practical interest often exhibit symmetries, separability, compositionality, and other simplifying properties. In this spirit, we develop a recursive multidimensional symbolic regression algorithm that combines neural network fitting with a suite of physics-inspired techniques.
View Article and Find Full Text PDFThe emergence of artificial intelligence (AI) and its progressively wider impact on many sectors requires an assessment of its effect on the achievement of the Sustainable Development Goals. Using a consensus-based expert elicitation process, we find that AI can enable the accomplishment of 134 targets across all the goals, but it may also inhibit 59 targets. However, current research foci overlook important aspects.
View Article and Find Full Text PDFWe investigate opportunities and challenges for improving unsupervised machine learning using four common strategies with a long history in physics: divide and conquer, Occam's razor, unification, and lifelong learning. Instead of using one model to learn everything, we propose a paradigm centered around the learning and manipulation of theories, which parsimoniously predict both aspects of the future (from past observations) and the domain in which these predictions are accurate. Specifically, we propose a generalized mean loss to encourage each theory to specialize in its comparatively advantageous domain, and a differentiable description length objective to downweight bad data and "snap" learned theories into simple symbolic formulas.
View Article and Find Full Text PDFThe pairwise maximum entropy model, also known as the Ising model, has been widely used to analyze the collective activity of neurons. However, controversy persists in the literature about seemingly inconsistent findings, whose significance is unclear due to lack of reliable error estimates. We therefore develop a method for accurately estimating parameter uncertainty based on random walks in parameter space using adaptive Markov-chain Monte Carlo after the convergence of the main optimization algorithm.
View Article and Find Full Text PDFWe present a novel recurrent neural network (RNN)-based model that combines the remembering ability of unitary evolution RNNs with the ability of gated RNNs to effectively forget redundant or irrelevant information in its memory. We achieve this by extending restricted orthogonal evolution RNNs with a gating mechanism similar to gated recurrent unit RNNs with a reset gate and an update gate. Our model is able to outperform long short-term memory, gated recurrent units, and vanilla unitary or orthogonal RNNs on several long-term-dependency benchmark tasks.
View Article and Find Full Text PDFMuch innovation is currently aimed at improving the number, density, and geometry of electrodes on extracellular multielectrode arrays for in vivo recording of neural activity in the mammalian brain. To choose a multielectrode array configuration for a given neuroscience purpose, or to reveal design principles of future multielectrode arrays, it would be useful to have a systematic way of evaluating the spike recording capability of such arrays. We describe an automated system that performs robotic patch-clamp recording of a neuron being simultaneously recorded via an extracellular multielectrode array.
View Article and Find Full Text PDFWe propose a method to use artificial neural networks to approximate light scattering by multilayer nanoparticles. We find that the network needs to be trained on only a small sampling of the data to approximate the simulation to high precision. Once the neural network is trained, it can simulate such optical processes orders of magnitude faster than conventional simulations.
View Article and Find Full Text PDF