Optical techniques, such as functional near-infrared spectroscopy (fNIRS), contain high potential for the development of non-invasive wearable systems for evaluating cerebral vascular condition in aging, due to their portability and ability to monitor real-time changes in cerebral hemodynamics. In this study, thirty-six healthy adults were measured by single channel fNIRS to explore differences between two age groups using machine learning (ML). The subjects, measured during functional magnetic resonance imaging (fMRI) at Oulu University Hospital, were divided into young (age ≤ 32) and elderly (age ≥ 57) groups.
View Article and Find Full Text PDFThere is an ongoing search for a reliable and continuous method of noninvasive blood pressure (BP) tracking. In this study, we investigate the feasibility of utilizing seismocardiogram (SCG) signals, i.e.
View Article and Find Full Text PDFPurpose: Effects of clinical radiotherapy are often studied between or after irradiations. The current study's aim was to monitor an immediate irradiation response in cerebral water and hemodynamics in patients treated with whole brain radiotherapy (WBRT) and to assess the response's individuality.
Methods: We used functional near-infrared spectroscopy (fNIRS) to monitor changes in cerebral water, oxyhemoglobin (HbO), and deoxyhemoglobin (HbR) during the irradiation of 31 patients (age 69.
Breast cancers can appear and progress rapidly, necessitating more frequent monitoring outside of hospital settings to significantly reduce mortality rates. Recently, there has been considerable interest in developing techniques for portable, user-friendly, and low-cost breast tumor monitoring applications, enabling frequent and cost-efficient examinations. Microwave technique-based breast cancer detection, which is based on differential dielectric properties of malignant and healthy tissues, is regarded as a promising solution for cost-effective breast tumor monitoring.
View Article and Find Full Text PDFMicrowave (MW) sensing is regarded as a promising technique for various medical monitoring and diagnostic applications due to its numerous advantages and the potential to be developed into a portable device for use outside hospital settings. The detection of skull fractures and the monitoring of their healing process would greatly benefit from a rapidly and frequently usable application that can be employed outside the hospital. This paper presents a simulation- and experiment-based study on skull fracture detection with the MW technique using realistic models for the first time.
View Article and Find Full Text PDFThe development of new medical-monitoring applications requires precise modeling of effects on the human body as well as the simulation and the emulation of realistic scenarios and conditions. The first aim of this paper is to develop realistic and adjustable 3D human-body emulation platforms that could be used for evaluating emerging microwave-based medical monitoring/sensing applications such as the detection of brain tumors, strokes, and breast cancers, as well as for capsule endoscopy studies. New phantom recipes are developed for microwave ranges for phantom molds with realistic shapes.
View Article and Find Full Text PDFCore needle biopsy is a part of the histopathological process, which is required for cancerous tissue examination. The most common method to guide the needle inside of the body is ultrasound screening, which in greater part is also the only guidance method. Ultrasound screening requires user experience.
View Article and Find Full Text PDFBackground: Inside the incompressible cranium, the volume of cerebrospinal fluid is directly linked to blood volume: a change in either will induce a compensatory change in the other. Vasodilatory lowering of blood pressure has been shown to result in an increase of intracranial pressure, which, in normal circumstances should return to equilibrium by increased fluid efflux. In this study, we investigated the effect of blood pressure lowering on fluorescent cerebrospinal fluid tracer absorption into the systemic blood circulation.
View Article and Find Full Text PDFIn-vivo microscopical studies indicate that brain cerebrospinal fluid (CSF) transport driven by blood vessel pulsations is reduced in the early stages of Alzheimer's disease (AD). We hypothesized that the coupling pattern between cerebrovascular pulsations and CSF is altered in AD, and this can be measured using multi-wavelength functional near-infrared spectroscopy (fNIRS). To study this, we quantified simultaneously cerebral hemo- and CSF hydrodynamics in early AD patients and age-matched healthy controls.
View Article and Find Full Text PDFDevelopment of acousto-optic (AO) techniques has made progress in recent years across a range of medical application fields, especially in improving resolution, detection speed, and imaging depth. This paper presents a comprehensive overview of recent advancements in AO-based techniques that have been presented after the previously published review in 2017. The survey covers a description of theoretical modeling strategies and numerical simulation methods as well as recent applications in medical fields.
View Article and Find Full Text PDFSignificance: Cancer therapy treatments produce extensive changes in the physiological and morphological properties of tissues, which are also individual dependent. Currently, a key challenge involves developing more tailored cancer therapy, and consequently, individual biological response measurement during therapy, such as tumor hypoxia, is of high interest. This is the first time human cerebral haemodynamics and cerebral tissue oxygenation index (TOI) changes were measured during the irradiation in clinical radiotherapy and functional near-infrared spectroscopy (fNIRS) technique was demonstrated as a feasible technique for clinical use in radiotherapy, based on 34 online patient measurements.
View Article and Find Full Text PDFPhoto-acoustic imaging, also known as opto-acoustic imaging, has become a widely popular modality for biomedical applications. This hybrid technique possesses the advantages of high optical contrast and high ultrasonic resolution. Due to the distinct optical absorption properties of tissue compartments and main chromophores, photo-acoustics is able to non-invasively observe structural and functional variations within biological tissues including oxygenation and deoxygenation, blood vessels and spatial melanin distribution.
View Article and Find Full Text PDFCerebral autoregulation is critically important to maintain proper brain perfusion and supply the brain with oxygenated blood. Non-invasive measures of blood pressure (BP) are critical in assessing cerebral autoregulation. Wave propagation velocity may be a useful technique to estimate BP but the effect of the location of the sensors on the readings has not been thoroughly examined.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Photoplethysmography (PPG) provides a simple, convenient and noninvasive method to assess pulse oximetry. Several attempts have been made to use PPG also to estimate blood pressure and arterial stiffness. This paper attempts to assess obesity classes, age group, and hypertension classes using PPG measured from the finger.
View Article and Find Full Text PDFUltra-fast functional magnetic resonance encephalography (MREG) enables separate assessment of cardiovascular, respiratory, and vasomotor waves from brain pulsations without temporal aliasing. We examined effects of breath hold- (BH) related changes on cardiovascular brain pulsations using MREG to study the physiological nature of cerebrovascular reactivity. We used alternating 32 s BH and 88 s resting normoventilation (NV) to change brain pulsations during MREG combined with simultaneously measured respiration, continuous non-invasive blood pressure, and cortical near-infrared spectroscopy (NIRS) in healthy volunteers.
View Article and Find Full Text PDFFluctuations in brain water content has attracted increasing interest, particularly as regards studies of the glymphatic system, which is connected with the complex organization of dural lymphatic vessels, responsible for cleaning tissue. Disturbances of glymphatic circulation are associated with several brain disorders, including dementia. This article introduces an approach to noninvasive measurement of water dynamics in the human brain utilizing near-infrared spectroscopy (NIRS).
View Article and Find Full Text PDFChemotherapy aided by opening of the blood-brain barrier with intra-arterial infusion of hyperosmolar mannitol improves the outcome in primary central nervous system lymphoma. Proper opening of the blood-brain barrier is crucial for the treatment, yet there are no means available for its real-time monitoring. The intact blood-brain barrier maintains a mV-level electrical potential difference between blood and brain tissue, giving rise to a measurable electrical signal at the scalp.
View Article and Find Full Text PDFStudies with magnetoencephalography (MEG) are still quite rarely combined simultaneously with methods that can provide a metabolic dimension to MEG investigations. In addition, continuous blood pressure measurements which comply with MEG compatibility requirements are lacking. For instance, by combining methods reflecting neurovascular status one could obtain more information on low frequency fluctuations that have recently gained increasing interest as a mediator of functional connectivity within brain networks.
View Article and Find Full Text PDFFunctional connectivity of the resting-state networks of the brain is thought to be mediated by very-low-frequency fluctuations (VLFFs <0.1 Hz) in neuronal activity. However, vasomotor waves and cardiorespiratory pulsations influence indirect measures of brain function, such as the functional magnetic resonance imaging blood-oxygen-level-dependent (BOLD) signal.
View Article and Find Full Text PDFThis report focuses on designing and implementing a non-invasive blood pressure (NIBP) measuring device capable of being used during magnetic resonance imaging (MRI). Based on measuring pulse wave velocity in arterial blood, the device uses the obtained result to estimate diastolic blood pressure. Pulse transit times are measured by two fibre optical accelerometers placed over the chest and carotid artery.
View Article and Find Full Text PDF