Quantitative understanding of microbial growth is an essential prerequisite for successful control of pathogens as well as various biotechnology applications. Even though the growth of cell populations has been extensively studied, microbial growth remains poorly characterised at the spatial level. Indeed, even isogenic populations growing at different locations on solid growth medium typically show significant location-dependent variability in growth.
View Article and Find Full Text PDFEvolutionary prediction and control are increasingly interesting research topics that are expanding to new areas of application. Unravelling and anticipating successful adaptations to different selection pressures becomes crucial when steering rapidly evolving cancer or microbial populations towards a chosen target. Here we introduce and apply a rich theoretical framework of optimal control to understand adaptive use of traits, which in turn allows eco-evolutionarily informed population control.
View Article and Find Full Text PDFIncreasing body of experimental evidence suggests that anticancer and antimicrobial therapies may themselves promote the acquisition of drug resistance by increasing mutability. The successful control of evolving populations requires that such biological costs of control are identified, quantified and included to the evolutionarily informed treatment protocol. Here we identify, characterise and exploit a trade-off between decreasing the target population size and generating a surplus of treatment-induced rescue mutations.
View Article and Find Full Text PDFThe antifouling potential of electric polarization combined and not combined with biocides was studied in nonsaline warm water with high organic content. Deinococcus geothermalis is a bacterium known for forming colored biofilms in paper machines and for its persistence against cleaning and chemical treatments. When D.
View Article and Find Full Text PDFChemical processes utilizing water both as extraction solvent and reaction medium are promising "Green Chemistry" alternatives to conventional techniques. Equipment for on-line coupled hot water extraction and supercritical water oxidation was constructed to extract polyaromatic hydrocarbons and toluene from sea sand followed by oxidation using hydrogen peroxide. The effectiveness of the technique is based on the physico-chemical properties of heated and pressurized water.
View Article and Find Full Text PDF