Background: Tau post-translational modifications (PTMs) result in the gradual build-up of abnormal tau and neuronal degeneration in tauopathies, encompassing variants of frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). Tau proteolytically cleaved by active caspases, including caspase-6, may be neurotoxic and prone to self-aggregation. Also, our recent findings show that caspase-6 truncated tau represents a frequent and understudied aspect of tau pathology in AD in addition to phospho-tau pathology.
View Article and Find Full Text PDFLymphocyte activation gene-3 (LAG-3) is a type I transmembrane protein with structural similarities to CD4. Overexpression of LAG-3 enables cancer cells to escape immune surveillance, while its blockade reinvigorates exhausted T cells and strengthens anti-infection immunity. Blockade of LAG-3 may have antitumor effects.
View Article and Find Full Text PDFRebalance of coagulation and anticoagulation to achieve a hemostatic effect has recently gained attention as an alternative therapeutic strategy for hemophilia. We engineered a humanized chimeric antibody, SR604, based on a previously published murine antibody, HAPC1573, which selectively blocks the anticoagulant activity of human activated protein C (APC). SR604 effectively blocked the anticoagulation activities of APC in human plasma deficient in various coagulation factors in vitro with affinities ∼60 times greater than that of HAPC1573.
View Article and Find Full Text PDFThe urokinase-type plasminogen activator receptor (uPAR) is an essential regulator for cell signaling in tumor cell proliferation, adhesion, and metastasis. The ubiquitous nature of uPAR in many aggressive cancer types makes uPAR an attractive target for immunotherapy. Here, we present a rapid and successful workflow for developing cross-reactive anti-uPAR recombinant antibodies (rAbs) using high-throughput optofluidic screening of single B-cells from human uPAR-immunized mice.
View Article and Find Full Text PDFCD137 (4-1BB, TNFRSF9), an inducible T-cell costimulatory receptor, is expressed on activated T cells, activated NK cells, Treg cells, and several innate immune cells, including DCs, monocytes, neutrophils, mast cells, and eosinophils. In animal models and clinical trials, anti-CD137 agonistic monoclonal antibodies have shown anti-tumor potential, but balancing the efficacy and toxicity of anti-CD137 agonistic monoclonal antibodies is a considerable hindrance for clinical applications. Here, we describe a novel fully human CD137 agonistic antibody (PE0116) generated from immunized harbor H2L2 human transgenic mice.
View Article and Find Full Text PDFDisease relapse and treatment-induced immunotoxicity pose significant clinical challenges for patients with hematological cancers. Here, we reveal distinctive requirements for neutralizing TNF receptor ligands APRIL and BAFF and their receptor activity in MM and DLBCL, impacting protein translation and production in MM cells and modulating the translation efficiency of the ATM interactor (ATMIN/ACSIZ). Therapeutically, we investigated the use of BCMA decoy receptor (sBCMA-Fc) as an inhibitor of APRIL and BAFF.
View Article and Find Full Text PDFGlucocorticoid-induced TNF receptor-related (GITR) can act as a co-stimulatory receptor, representing a potential target for safely enhancing immunotherapy efficacy. GITR is triggered by a GITR ligand or an agonist antibody and activates CD8 and CD4 effector T cells, reducing tumor-infiltrating Treg numbers and resulting in activation of immune responses and tumor cell destruction by effector T cells. GITR is an attractive target for immunotherapy, especially in combination therapy with immune checkpoint inhibitors, as is being explored in clinical trials.
View Article and Find Full Text PDFAim: Tau truncation (tr-tau) by active caspase-6 (aCasp-6) generates tau fragments that may be toxic. Yet the relationship between aCasp-6, different forms of tr-tau and hyperphosphorylated tau (p-tau) accumulation in human brains with Alzheimer's disease (AD) and other tauopathies remains unclear.
Methods: We generated two neoepitope monoclonal antibodies against tr-tau sites (D402 and D13) targeted by aCasp-6.
Purpose: Ovarian cancer represents a major clinical hurdle for immune checkpoint blockade (ICB), with reported low patient response rates. We found that the immune checkpoint ligand PD-L2 is robustly expressed in patient samples of ovarian cancers and other malignancies exhibiting suboptimal response to ICB but not in cancers that are ICB sensitive. Therefore, we hypothesize that PD-L2 can facilitate immune escape from ICB through incomplete blockade of the PD-1 signaling pathway.
View Article and Find Full Text PDFOX40 is a costimulatory molecule that belongs to the tumor necrosis factor receptor (TNFR) superfamily. OX40 agonist-based combinations are emerging as promising candidates for novel cancer immunotherapy. Clinical trials have shown that OX40 agonist antibodies could lead to better results in cancer patients.
View Article and Find Full Text PDFCluster of differentiation 47 (CD47) is a widely expressed self-protection transmembrane protein that functions as a critical negative regulator to induce macrophage-mediated phagocytosis. Overexpression of CD47 enables cancer cells to escape immune surveillance and destruction by phagocytes both in solid tumours and leukaemia. The usefulness of anti-CD47 antibody has been demonstrated in multiple immunotherapies associated with macrophages.
View Article and Find Full Text PDFImmune checkpoint blockade (ICB) has been proven to be an effective strategy for enhancing the effector activity of anti-tumor T cells, and checkpoint blockers targeting CTLA-4, PD-1, and PD-L1 have displayed strong and durable clinical responses in certain cancer patients. The new hope brought by ICB therapy has led to the boost in therapeutic development of ICBs in recent years. Nonetheless, the therapeutic efficacy of ICBs varies substantially among cancer types and patients, and only a proportion of cancer patients could benefit from ICBs.
View Article and Find Full Text PDFProgrammed cell death 1 (PD-1) monoclonal antibodies have been approved by regulatory agencies for the treatment of various types of cancer, and the mechanism involves the restoration of T cell functions. We report herein the X-ray crystal structure of a fully human monoclonal antibody mAb059c fragment antigen-binding (Fab) in complex with the PD-1 extracellular domain (ECD) at a resolution of 1.70 Å.
View Article and Find Full Text PDFInterphase chromatin is organized in distinct nuclear sub-compartments, reflecting its degree of compaction and transcriptional status. In Caenorhabditis elegans embryos, H3K9 methylation is necessary to silence and to anchor repeat-rich heterochromatin at the nuclear periphery. In a screen for perinuclear anchors of heterochromatin, we identified a previously uncharacterized C.
View Article and Find Full Text PDFHistone lysine methyltransferase NSD2 (WHSC1/MMSET) is overexpressed frequently in multiple myeloma due to the t(4;14) translocation associated with 15% to 20% of cases of this disease. NSD2 has been found to be involved in myelomagenesis, suggesting it may offer a novel therapeutic target. Here we show that NSD2 methyltransferase activity is crucial for clonogenicity, adherence, and proliferation of multiple myeloma cells on bone marrow stroma in vitro and that NSD2 is required for tumorigenesis of t(4;14)+ but not t(4;14)- multiple myeloma cells in vivo.
View Article and Find Full Text PDFInsulin resistance, hyperlipidemia, and cardiovascular complications are common dysregulations of metabolic syndrome. Transplant patients treated with immunosuppressant drugs such as cyclosporine A (CsA), an inhibitor of calcineurin phosphatase, frequently develop similar metabolic complications. Although calcineurin is known to mediate insulin sensitivity by regulating β-cell growth and adipokine gene transcription, its role in lipid homeostasis is poorly understood.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2012
Ezh2 (Enhancer of zeste homolog 2) protein is the enzymatic component of the Polycomb repressive complex 2 (PRC2), which represses gene expression by methylating lysine 27 of histone H3 (H3K27) and regulates cell proliferation and differentiation during embryonic development. Recently, hot-spot mutations of Ezh2 were identified in diffused large B-cell lymphomas and follicular lymphomas. To investigate if tumor growth is dependent on the enzymatic activity of Ezh2, we developed a potent and selective small molecule inhibitor, EI1, which inhibits the enzymatic activity of Ezh2 through direct binding to the enzyme and competing with the methyl group donor S-Adenosyl methionine.
View Article and Find Full Text PDFMethods Mol Biol
March 2012
Transcription factors recruit a wide variety of associated co-factors to regulate gene expression. These co-factors include protein kinases, phosphatases, deacetylases, methylases, and ubiquitin ligases, etc. To identify novel protein kinases associated with transcription factor NFAT, we took advantage of the increased ability of DNA binding and used an oligonucleotide affinity-binding approach.
View Article and Find Full Text PDFThe primary function of B cells, critical components of the adaptive immune response, is to produce antibodies against foreign antigens, as well as to perform isotype class switching, which changes the heavy chain of an antibody so that it can interact with different repertoires of effector cells. CD40 is a member of the tumor necrosis factor superfamily of cell surface receptors that transmits survival signals to B cells. In contrast, in B cell cancers, stimulation of CD40 signaling results in a heterogeneous response in which cells can sometimes undergo cell death in response to treatment, depending on the system studied.
View Article and Find Full Text PDFCalcineurin is a widely expressed and highly conserved Ser/Thr phosphatase. Calcineurin is inhibited by the immunosuppressant drug cyclosporine A (CsA) or tacrolimus (FK506). The critical role of CsA/FK506 as an immunosuppressant following transplantation surgery provides a strong incentive to understand the phosphatase calcineurin.
View Article and Find Full Text PDFThe target of rapamycin (TOR) signaling regulates the nucleocytoplasmic shuttling of transcription factors in yeast. Whether the mammalian counterpart of TOR (mTOR) also regulates nucleocytoplasmic shuttling is not known. Using a phospho-specific monoclonal antibody, we demonstrate that mTOR phosphorylates Ser(168,170) of endogenous NFATc4, which are conserved gate-keeping Ser residues that control NFAT subcellular distribution.
View Article and Find Full Text PDFADP-ribosylation is a reversible posttranslational modification mediated by poly-ADP-ribose polymerase (PARP). The results of recent studies demonstrate that ADP-ribosylation contributes to transcription regulation. Here, we report that transcription factor NFAT binds to and is ADP-ribosylated by PARP-1 in an activation-dependent manner.
View Article and Find Full Text PDFThin spongy myocardium is critical at early embryonic stage [before embryonic day (E) 13.5 in mice] to allow diffusion of oxygen and nutrients to the developing cardiomyocytes. However, establishment of compact myocardium at later stage ( approximately E16.
View Article and Find Full Text PDFCompromised immunoregulation contributes to obesity and complications in metabolic pathogenesis. Here, we demonstrate that the nuclear factor of activated T cell (NFAT) group of transcription factors contributes to glucose and insulin homeostasis. Expression of two members of the NFAT family (NFATc2 and NFATc4) is induced upon adipogenesis and in obese mice.
View Article and Find Full Text PDFInflammatory cytokines such as interleukin-1 and tumor necrosis factor-alpha modulate a transcription factor cascade in the liver to induce and sustain an acute and systemic defense against foreign entities. The transcription factors involved include NF-kappaB, STAT, and CCAAT/enhancer-binding protein (C/EBP). Whether the NFAT group of transcription factors (which was first characterized as playing an important role in cytokine gene expression in the adaptive response in immune cells) participates in the acute-phase response in hepatocytes is not known.
View Article and Find Full Text PDF