Publications by authors named "Teddy Ehianeta"

is increasingly recognized as the causative agent of chronic pulmonary infections in humans. One of the genes found to be under strong evolutionary pressure during adaptation of to the human lung is which encodes an arabinosyltransferase required for the biosynthesis of the cell envelope lipoglycan, lipoarabinomannan (LAM). To assess the impact of patient-derived mutations on the physiology and virulence of , mutations were introduced in the isogenic background of ATCC 19977 and the resulting strains probed for phenotypic changes in a variety of in vitro and host cell-based assays relevant to infection.

View Article and Find Full Text PDF

While repurposed drugs came in handy earlier in the wake of the coronavirus disease 2019 (COVID-19) pandemic, vaccination has been considered a more sustainable approach. The recent spikes have been linked to "double," "triple," and even multi-mutant variants, thus renewing calls for deeper structural and functional insights of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as a lead to rationale design of therapeutics, vaccines, and point-of-care diagnostics. There is a repertoire of findings from the earliest SARS-CoV-2 molecular mimicry to evade host immunity cum host immune responses to the role of the viral glycocalyx in modulating the susceptibility and severity of infection through attraction and repulsive interactions.

View Article and Find Full Text PDF

As an innovative therapeutic strategy, drug repurposing affords old, approved, and already established drugs a chance at new indications. In the wake of the COVID-19 pandemic and the accompanied urgency for a lasting treatment, drug repurposing has come in handy to stem the debilitating effects of the disease. Among other therapeutic options currently in clinical trials, chloroquine (CQ) and the hydroxylated analogue, hydroxychloroquine (HCQ) have been frontline therapeutic options in most formal and informal clinical settings with varying degrees of efficacy against this life-threatening disease.

View Article and Find Full Text PDF

Mangiferin (2C-β-d-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone) is a xanthone C-glycoside occurring in many plant species. Composed of a glucose unit C1→2 linked to a 1,3,6,7-tetrahydroxyxanthone aglycone, mangiferin exhibits a wide range of biological activities, which recently renewed its interest as a potential pharmacophore. Mangiferin is mainly isolated after extraction procedures from natural sources alongside with its isoforms isomangiferin, homomangiferin, and neomangiferin.

View Article and Find Full Text PDF