The objective of thermonuclear fusion consists of producing electricity from the coalescence of light nuclei in high temperature plasmas. The most promising route to fusion envisages the confinement of such plasmas with magnetic fields, whose most studied configuration is the tokamak. Disruptions are catastrophic collapses affecting all tokamak devices and one of the main potential showstoppers on the route to a commercial reactor.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), broke out in December 2019 in Wuhan city, in the Hubei province of China. Since then, it has spread practically all over the world, disrupting many human activities. In temperate climates overwhelming evidence indicates that its incidence increases significantly during the cold season.
View Article and Find Full Text PDFThis article describes a refinement of recurrence analysis to determine the delay in the causal influence between a driver and a target, in the presence of additional perturbations affecting the time series of the response observable. The methodology is based on the definition of a new type of recurrence plots, the Conditional Joint Recurrence plot. The potential of the proposed approach resides in the great flexibility of recurrence plots themselves, which allows extending the technique to more than three quantities.
View Article and Find Full Text PDFAdvanced time series analysis and causality detection techniques have been successfully applied to the assessment of synchronization experiments in tokamaks, such as Edge Localized Modes (ELMs) and sawtooth pacing. Lag synchronization is a typical strategy for fusion plasma instability control by pace-making techniques. The major difficulty, in evaluating the efficiency of the pacing methods, is the coexistence of the causal effects with the periodic or quasi-periodic nature of the plasma instabilities.
View Article and Find Full Text PDFThe application of data driven machine learning and advanced statistical tools to complex physics experiments, such as Magnetic Confinement Nuclear Fusion, can be problematic, due the varying conditions of the systems to be studied. In particular, new experiments have to be planned in unexplored regions of the operational space. As a consequence, care must be taken because the input quantities used to train and test the performance of the analysis tools are not necessarily sampled by the same probability distribution as in the final applications.
View Article and Find Full Text PDFMalaria, a disease with major health and socio-economic impacts, is driven by multiple factors, including a complex interaction with various climatic variables. In this paper, five methods developed for inferring causal relations between dynamic processes based on the information encapsulated in time series are applied on cases previously studied in literature by means of statistical methods. The causality detection techniques investigated in the paper are: a version of the kernel Granger causality, transfer entropy, recurrence plot, causal decomposition and complex networks.
View Article and Find Full Text PDFA new measure for the characterization of interconnected dynamical systems coupling is proposed. The method is based on the representation of time series as weighted cross-visibility networks. The weights are introduced as the metric distance between connected nodes.
View Article and Find Full Text PDFThe total emission of radiation is a crucial quantity to calculate the power balances and to understand the physics of any Tokamak. Bolometric systems are the main tool to measure this important physical quantity through quite sophisticated tomographic inversion methods. On the Joint European Torus, the coverage of the bolometric diagnostic, due to the availability of basically only two projection angles, is quite limited, rendering the inversion a very ill-posed mathematical problem.
View Article and Find Full Text PDFThe Joint European Torus (JET) neutron profile monitor ensures 2D coverage of the gamma and neutron emissive region that enables tomographic reconstruction. Due to the availability of only two projection angles and to the coarse sampling, tomographic inversion is a limited data set problem. Several techniques have been developed for tomographic reconstruction of the 2-D gamma and neutron emissivity on JET, but the problem of evaluating the errors associated with the reconstructed emissivity profile is still open.
View Article and Find Full Text PDF