Publications by authors named "Ted Thurn"

Titanium dioxide (TiO) nanoparticles are produced for many different purposes, including development of therapeutic and diagnostic nanoparticles for cancer detection and treatment, drug delivery, induction of DNA double-strand breaks, and imaging of specific cells and subcellular structures. Currently, the use of optical microscopy, an imaging technique most accessible to biology and medical pathology, to detect TiO nanoparticles in cells and tissues is limited with low detection limits, while more sensitive imaging methods (transmission electron microscopy, X-ray fluorescence microscopy, etc.) have low throughput and technical and operational complications.

View Article and Find Full Text PDF

Introduction: The emergence of hormone therapy resistance, despite continued expression of the estrogen receptor (ER), is a major challenge to curing breast cancer. Recent clinical studies suggest that epigenetic modulation by histone deacetylase (HDAC) inhibitors reverses hormone therapy resistance. However, little is known about epigenetic modulation of the ER during acquired hormone resistance.

View Article and Find Full Text PDF

Ataxia-telangiectasia mutated (ATM) is a major regulator of the DNA damage response. ATM promotes the activation of BRCA1, CHK2, and p53 leading to the induction of response genes such as CDKN1A (p21), GADD45A, and RRM2B that promote cell-cycle arrest and DNA repair. The upregulation of these response genes may contribute to resistance of cancer cells to genotoxic therapies.

View Article and Find Full Text PDF

Hormonal therapy resistance remains a considerable barrier in the treatment of breast cancer. Activation of the Akt-PI3K-mTOR pathway plays an important role in hormonal therapy resistance. Our recent preclinical and clinical studies showed that the addition of a histone deacetylase inhibitor re-sensitized hormonal therapy resistant breast cancer to tamoxifen.

View Article and Find Full Text PDF

Histone deacetylases (HDACs) regulate the acetylation of a variety of histone and nonhistone proteins, controlling the transcription and regulation of genes involved in cell cycle control, proliferation, survival, DNA repair and differentiation. Unsurprisingly, HDAC expression is frequently altered in hematologic and solid tumor malignancies. Two HDAC inhibitors (vorinostat and romidepsin) have been approved by the US FDA for the treatment of cutaneous T-cell lymphoma.

View Article and Find Full Text PDF

We describe the synthesis of peptide nucleic acid (PNA)-titanium dioxide (TiO(2)) nanoconjugates and several novel methods developed to investigate the DNA hybridization behaviors of these constructs. PNAs are synthetic DNA analogs resistant to degradation by cellular enzymes that hybridize to single-stranded DNA (ssDNA) with higher affinity than DNA oligonucleotides, invade double-stranded DNA (dsDNA), and form different PNA/DNA complexes. Previously, we developed a DNA-TiO(2) nanoconjugate capable of hybridizing to target DNA intracellularly in a sequence-specific manner with the ability to cleave DNA when excited by electromagnetic radiation but susceptible to degradation that may lower its intracellular targeting efficiency and retention time.

View Article and Find Full Text PDF

In the following review we discuss several types of nanoparticles (such as TiO2, quantum dots, and gold nanoparticles) and their impact on the ability to image biological components in fixed cells. The review also discusses factors influencing nanoparticle imaging and uptake in live cells in vitro. Due to their unique size-dependent properties nanoparticles offer numerous advantages over traditional dyes and proteins.

View Article and Find Full Text PDF