Publications by authors named "Ted Mendum"

Non-intrusive means to detect concealed firearms based on magnetometry are widely accepted and employed worldwide. Explosive detection canines can also detect concealed firearms provided that they are imprinted on materials that may be related to firearms such as nitroglycerin in double-base smokeless powders. However, there are hundreds of possible smokeless powder formulations across various manufacturers, presenting a challenge for trained canines to generalize across all possible powder compositions.

View Article and Find Full Text PDF

Canines remain the gold standard for explosives detection in many situations, and there is an ongoing desire for them to perform at the highest level. This goal requires canine training to be approached similarly to scientific sensor design. Developing a canine training regimen is made challenging by a lack of understanding of the canine's odor environment, which is dynamic and typically contains multiple odorants.

View Article and Find Full Text PDF

A rapid method for vapor pressure measurement was developed and used to derive the vapor pressure curve of the thermally labile peroxide-based explosive hexamethylene triperoxide diamine (HMTD) over the temperature range from 28 to 80 °C. This method uses a controlled flow of vapor from a solid-phase HMTD source that is presented to an ambient-pressure-ionization mass spectrometer equipped with a secondary-electrospray-ionization (SESI) source. The subpart-per-trillion sensitivity of this system enables direct detection of HMTD vapor through an intact [M + H](+) ion in real time at temperatures near 20 °C.

View Article and Find Full Text PDF