Fragment-based drug discovery (FBDD) has become a widely used tool in small-molecule drug discovery efforts. One of the most commonly used biophysical methods in detecting weak binding of fragments is nuclear magnetic resonance (NMR) spectroscopy. In particular, FBDD performed with (19)F NMR-based methods has been shown to provide several advantages over (1)H NMR using traditional magnetization-transfer and/or two-dimensional methods.
View Article and Find Full Text PDFBACE1 inhibition to prevent Aβ peptide formation is considered to be a potential route to a disease-modifying treatment for Alzheimer's disease. Previous efforts in our laboratory using a combined structure- and property-based approach have resulted in the identification of aminooxazoline xanthenes as potent BACE1 inhibitors. Herein, we report further optimization leading to the discovery of inhibitor 15 as an orally available and highly efficacious BACE1 inhibitor that robustly reduces CSF and brain Aβ levels in both rats and nonhuman primates.
View Article and Find Full Text PDFThe β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aβ levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.
View Article and Find Full Text PDFβ-Secretase inhibitors are potentially disease-modifying treatments for Alzheimer's disease. Previous efforts in our laboratory have resulted in hydroxyethylamine-derived inhibitors such as 1 with low nanomolar potency against β-site amyloid precursor protein cleaving enzyme (BACE). When dosed intravenously, compound 1 was also shown to significantly reduce Aβ40 levels in plasma, brain, and cerebral spinal fluid.
View Article and Find Full Text PDFWe have previously shown that hydroxyethylamines can be potent inhibitors of the BACE1 enzyme and that the generation of BACE1 inhibitors with CYP 3A4 inhibitory activities in this scaffold affords compounds (e.g., 1) with sufficient bioavailability and pharmacokinetic profiles to reduce central amyloid-β peptide (Aβ) levels in wild-type rats following oral dosing.
View Article and Find Full Text PDFA series of potent hydroxyethyl amine (HEA) derived inhibitors of β-site APP cleaving enzyme (BACE1) was optimized to address suboptimal pharmacokinetics and poor CNS partitioning. This work identified a series of benzodioxolane analogues that possessed improved metabolic stability and increased oral bioavailability. Subsequent efforts focused on improving CNS exposure by limiting susceptibility to Pgp-mediated efflux and identified an inhibitor which demonstrated robust and sustained reduction of CNS β-amyloid (Aβ) in Sprague-Dawley rats following oral administration.
View Article and Find Full Text PDFDespite the prevalence of KRAS mutations in human cancers, there remain no targeted therapies for treatment. The serine-threonine kinase STK33 has been proposed to be required for the survival of mutant KRAS-dependent cell lines, suggesting that small molecule kinase inhibitors of STK33 may be useful to treat KRAS-dependent tumors. In this study, we investigated the role of STK33 in mutant KRAS human cancer cells using RNA interference, dominant mutant overexpression, and small molecule inhibitors.
View Article and Find Full Text PDFUsing fragment-based screening of a focused fragment library, 2-aminoquinoline 1 was identified as an initial hit for BACE1. Further SAR development was supported by X-ray structures of BACE1 cocrystallized with various ligands and molecular modeling studies to expedite the discovery of potent compounds. These strategies enabled us to integrate the C-3 side chain on 2-aminoquinoline 1 extending deep into the P2' binding pocket of BACE1 and enhancing the ligand's potency.
View Article and Find Full Text PDF[structure: see text] By total synthesis, mycolactone C has been established as an approximately 1:1 mixture of Z-Delta4'5'- and E-Delta4'5'-geometric isomers of C12'-deoxymycolactones A and B.
View Article and Find Full Text PDFThe concise, enantioselective total synthesis of the potent antitumor antibiotics (+)-FR900482 and (+)-FR66979 are described. Sharpless asymmetric epoxidation technology has been deployed to construct the optically active aziridine-containing fragment that is joined to the aromatic moiety in a highly convergent manner. Dimethyldioxirane effects the remarkable one-step deprotection/oxidative cyclization of an eight-membered ring amino-ketone to the unique hydroxylamine hemiketal ring system that is a distinctive structural motif of FR900482.
View Article and Find Full Text PDF[reaction: see text] The synthesis and biochemical reactivity of the first photoactivated mitosene-based DNA interstrand cross-linking agent is described.
View Article and Find Full Text PDF