Background: The staggering morbidity associated with chronic inflammatory diseases can be reduced by psychological interventions, including Mindfulness-Based Stress Reduction (MBSR). Proposed mechanisms for MBSR's beneficial effects include changes in salience network function. Salience network perturbations are also associated with chronic inflammation, including airway inflammation in asthma, a chronic inflammatory disease affecting approximately 10% of the population.
View Article and Find Full Text PDFMindfulness meditation has been shown to increase resting-state functional connectivity (rsFC) between the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC), which is thought to reflect improvements in shifting attention to the present moment. However, prior research in long-term meditation practitioners lacked quantitative measures of attention that would provide a more direct behavioral correlate and interpretational anchor for PCC-DLPFC connectivity and was inherently limited by small sample sizes. Moreover, whether mindfulness meditation primarily impacts brain function locally, or impacts the dynamics of large-scale brain networks, remained unclear.
View Article and Find Full Text PDFMindfulness meditation training has been shown to increase resting-state functional connectivity between nodes of the frontoparietal executive control network (dorsolateral prefrontal cortex [DLPFC]) and the default mode network (posterior cingulate cortex [PCC]). We investigated whether these effects generalized to a Mindfulness-Based Stress Reduction (MBSR) course and tested for structural and behaviorally relevant consequences of change in connectivity. Healthy, meditation-naïve adults were randomized to either MBSR (N = 48), an active (N = 47) or waitlist (N = 45) control group.
View Article and Find Full Text PDFPrevious studies have identified reduced heart rate variability (HRV) in post-traumatic stress disorder (PTSD), which may temporally precede the onset of the disorder. A separate line of functional neuroimaging research in PTSD has consistently demonstrated hypoactivation of the ventromedial prefrontal cortex (vmPFC), a key aspect of a descending neuromodulatory system that exerts inhibitory control over heart rate. No research to date, however, has simultaneously investigated whether altered vmPFC activation is associated with reduced HRV and elevated PTSD symptoms in the same individuals.
View Article and Find Full Text PDF