Curr Protein Pept Sci
October 2007
Structure-based drug design (SBDD) has played an integral role in the development of highly specific, potent protease inhibitors resulting in a number of drugs in clinical trials and on the market. Possessing biochemical assays and structural information on both the target protease and homologous family members helps ensure compound selectivity. We have redesigned the path from clone to protein eliminating many of the traditional bottlenecks associated with protein production to ensure a constant supply to feed many diverse protease drug discovery programs.
View Article and Find Full Text PDFA recurring obstacle for structural genomics is the expression of insoluble, aggregated proteins. In these cases, the use of alternative salvage strategies, like in vitro refolding, is hindered by the lack of a universal refolding method. To overcome this obstacle, fractional factorial screens have been introduced as a systematic and rapid method to identify refolding conditions.
View Article and Find Full Text PDFThe effect of the length of ROCK (Rho-associated kinase) on its oligomerization state has been investigated by analysing full-length protein and four truncated constructs using light-scattering and analytical ultracentrifugation methods. Changes in size correlate with the kinetic properties of the kinase. Sedimentation velocity, sedimentation equilibrium and light-scattering data analyses revealed that protein constructs of size Ser6-Arg415 and larger exist predominantly as dimers, while smaller constructs are predominantly monomeric.
View Article and Find Full Text PDF