A major component of the damaging effect after traumatic brain injury (TBI) is activation of the inflammatory system. In particular, chemokines and chemokine-regulated factors become activated in resident brain cells and signal to different invading immune cells. For evaluation of the effect on invading cells 3 days after injury, mice were treated with a single initial dose of the anti-inflammatory agent Rabeximod in an experimental TBI model.
View Article and Find Full Text PDFBrain trauma is known to activate inflammatory cells via various chemokine signals although their interactions remain to be characterized. Mice deficient in Ccl3, Ccr2 or Cxcl10 were compared with wildtype mice after controlled cortical impact injury. Expression of Ccl3 in wildtypes was rapidly upregulated in resident, regularly spaced reactive microglia.
View Article and Find Full Text PDFClearing of dead cells is a fundamental process to limit tissue damage following brain injury. Engulfment has classically been believed to be performed by professional phagocytes, but recent data show that non-professional phagocytes are highly involved in the removal of cell corpses in various situations. The role of astrocytes in cell clearance following trauma has however not been studied in detail.
View Article and Find Full Text PDFIncreasing evidence suggests that interleukin-1β (IL-1β) is a key mediator of the inflammatory response following traumatic brain injury (TBI). Recently, we showed that intracerebroventricular administration of an IL-1β-neutralizing antibody was neuroprotective following TBI in mice. In the present study, an anti-IL-1β antibody or control antibody was administered intraperitoneally following controlled cortical injury (CCI) TBI or sham injury in 105 mice and we extended our histological, immunological and behavioral analysis.
View Article and Find Full Text PDFPurpose: Astroglial responses after traumatic brain injury are difficult to detect with routine morphological methods. The aims for this study were to compare the temporal and spatial expression pattern of vimentin- and glial fibrillary acidic protein (GFAP) in a weight drop model of mild cerebral contusion injury in the rat. We also wanted to study the vimentin response with immunohistochemistry and vimentin mRNA RT-PCR analysis in severe cortical contusion injury produced by the controlled cortical impact in the mouse.
View Article and Find Full Text PDFTraumatic brain injury (TBI) in the mouse results in the rapid appearance of scattered clusters of cells expressing the chemokine Cxcl10 in cortical and subcortical areas. To extend the observation of this unique pattern, we used neuropathological mouse models using quantitative reverse transcriptase-polymerase chain reaction, gene array analysis, in-situ hybridization and flow cytometry. As for TBI, cell clusters of 150-200 mum expressing Cxcl10 characterize the cerebral cortex of mice carrying a transgene encoding the Swedish mutation of amyloid precursor protein, a model of amyloid Alzheimer pathology.
View Article and Find Full Text PDFCerebral gene expression changes in response to traumatic brain injury will provide useful information in the search for future trauma treatment. In order to characterize the outcome of mild brain injury, we studied C57BL/6J mice in a weight-drop, closed head injury model. At various times post-injury, mRNA was isolated from neocortex and hippocampus and transcriptional alterations were studied using quantitative reverse transcriptase PCR and gene array analysis.
View Article and Find Full Text PDFUbiquitin-positive intraneuronal inclusions are a consistent feature of the major human neurodegenerative diseases, suggesting that dysfunction of the ubiquitin proteasome system is central to disease etiology. Research using inhibitors of the 20S proteasome to model Parkinson's disease is controversial. We report for the first time that specifically 26S proteasomal dysfunction is sufficient to trigger neurodegenerative disease.
View Article and Find Full Text PDFCerebral gene expressions change in response to traumatic brain injury (TBI), and future trauma treatment may improve with increased knowledge about these regulations. We subjected C57BL/6J mice to injury by controlled cortical impact (CCI). At various time points post-injury, mRNA from neocortex and hippocampus was isolated, and transcriptional alterations studied using quantitative real-time polymerase chain reaction (PCR) and gene array analysis.
View Article and Find Full Text PDFGrowth differentiation factor-1 (GDF1), a TGF-beta superfamily member, participates in early embryo patterning. Later functions are implied by the Gdf1 expression in the peripheral and central nervous system. Such roles of the gene have been difficult to study, because Gdf1 null mice die during late embryogenesis.
View Article and Find Full Text PDFBackground: The Adhesion G protein-coupled receptors (GPCRs) are membrane-bound receptors with long N termini. This family has 33 members in humans. Several Adhesion GPCRs are known to have important physiological functions in CNS development and immune system response mediated by large cell surface ligands.
View Article and Find Full Text PDFMembers of the solute carrier families (SLC) 32, 36, and 38, together also designated the beta-group of SLCs, are known to transport neutral amino acids. In this paper, we show that these three families were present before the split of the animal lineage and that they are likely to share a common decent. We also show that the APF transporters found in plants are most likely homologous to the mammalian beta-group, suggesting that this type of transporters arouse early in the evolution of eukaryotes.
View Article and Find Full Text PDFThree genetic mouse models were examined to define effects of bone morphogenetic protein (BMP) signalling on gene expression in normal and injured adult brain. CaMKII-Cre eliminated the BMP receptor Acvr1 (Alk2) and the common TGFbeta superfamily signal mediator Smad4 or activated a constitutively active Acvr1 in postnatal forebrain neurons. All mutants followed mendelian ratios, with no overt phenotypic changes.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) cascades are membrane-to-nucleus signaling modules that recently have been implicated as mediators of cellular injury. In this study, we investigated the involvement of the MAP kinase p44/p42 (extracellular signal-regulated kinase [ERK1/2]) in traumatic brain injury (TBI) in rats. There was a strong increase in activated, phosphorylated ERK 1/2 (p-ERK 1/2) protein at 10 min up to 24 h after the injury.
View Article and Find Full Text PDFCatecholaminergic neurons are affected in several neurological and psychiatric diseases. Tyrosine hydroxylase (TH) is the first, rate-limiting enzyme in catecholamine synthesis. We report a knockin mouse expressing Cre-recombinase from the 3'-untranslated region of the endogenous Th gene by means of an internal ribosomal entry sequence (IRES).
View Article and Find Full Text PDFBone morphogenetic proteins (BMPs) 4 and 6 as well as MEK inhibitors PD98059 and U0126 potentiate neurotrophin 3 (NT3)- and neurturin (NTN)-induced neurite outgrowth and survival of peripheral neurons from the E9 chicken embryo. Preexposure to BMP4 or PD98059 was sufficient to prime the potentiation of subsequently added NT3. Phosphorylation of Erk2, induced by NT3, was reduced by MEK inhibition but unaffected by BMP signaling.
View Article and Find Full Text PDFWe investigated the use of the mouse tyrosine hydroxylase (TH) gene to drive knock-in constructs in catecholaminergic neurons. Two targeting constructs representing truncated forms of either of the BMP receptors ALK-2 or BMPR-II preceded by an internal ribosome entry site (IRES) were introduced into the 3' untranslated region of TH. An frt-flanked neomycin-resistance (neo(r)) cassette was placed in the 3' end of the targeting constructs.
View Article and Find Full Text PDFOlfactory ensheathing cells (OEC) constitute a specialized population of glia that accompany primary olfactory axons and have been reported to facilitate axonal regeneration after spinal cord injury in vivo. In the present report we describe OEC neurotrophic factor expression and neurotrophic properties of OECs in vitro. Investigation of the rat olfactory system during development and adulthood by radioactive in situ hybridization revealed positive labeling in the olfactory nerve layer for the neurotrophic molecules S-100beta, CNTF, BMP-7/OP-1, and artemin, as well as for the neurotrophic factor receptors RET and TrkC.
View Article and Find Full Text PDFWe have developed a transgenic mouse expressing the Cre recombinase under control of a tetracycline-responsive promoter. Using a CamKIIalpha-driven tTA transgenic strain and a lacZ reporter mouse, we obtained the expected neuronal pattern of recombination in the olfactory lobe, cortex, striatum, hippocampus and Purkinje cells. Moreover, recombination can be completely abolished by feeding the mice doxycycline in their drinking water.
View Article and Find Full Text PDF