MicroRNAs are small non-protein coding RNAs that regulate gene expression through post-transcriptional repression. Recent studies demonstrated the importance of microRNAs in the nervous system development, function and disease. Parkinson's disease is the second most prevalent neurodegenerative disease with only symptomatic treatment available.
View Article and Find Full Text PDFJ Am Assoc Lab Anim Sci
November 2010
Pinworms are highly contagious parasites of laboratory rodents that often are treated with fenbendazole. To our knowledge, the effect of fenbendazole at therapeutic dosages on behavioral tests in mice has not been evaluated. Here we studied 6-wk-old male C57BL/6N mice.
View Article and Find Full Text PDFThe central nervous system has the capacity to activate profound neuroprotection following sub-lethal stress in a process termed preconditioning. To gain insight into this potent survival response we developed a functional cloning strategy that identified 31 putative neuroprotective genes of which 28 were confirmed to provide protection against oxygen-glucose deprivation (OGD) or excitotoxic exposure to N-methyl-D-aspartate (NMDA) in primary rat cortical neurons. These results reveal that the brain possesses a wide and diverse repertoire of neuroprotective genes.
View Article and Find Full Text PDFMutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkin's ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins, 1-methyl-4-phenylpyridinium (MPP(+)) in vitro and in vivo by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), leading to parkin inactivation, accumulation of the parkin substrates aminoacyl-tRNA synthetase-interacting multifunctional protein type 2 (AIMP2) (p38/JTV-1) and fuse-binding protein 1 (FBP1), and cell death.
View Article and Find Full Text PDFLeucine-rich repeat kinase-2 (LRRK2) mutations are a common cause of Parkinson's disease. Here we identify inhibitors of LRRK2 kinase that are protective in in vitro and in vivo models of LRRK2-induced neurodegeneration. These results establish that LRRK2-induced degeneration of neurons in vivo is kinase dependent and that LRRK2 kinase inhibition provides a potential new neuroprotective paradigm for the treatment of Parkinson's disease.
View Article and Find Full Text PDFProg Brain Res
December 2010
Until recently, genetics was thought to play a minor role in the development of Parkinson's disease (PD). Over the last decade, a number of genes that definitively cause PD have been identified, which has led to the generation of disease models based on pathogenic gene variants that recapitulate many features of the disease. These genetic studies have provided novel insight into potential mechanisms underlying the aetiology of PD.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) gene have been identified as an important cause of late-onset, autosomal dominant familial Parkinson disease and contribute to sporadic Parkinson disease. LRRK2 is a large complex protein with multiple functional domains, including a Roc-GTPase, protein kinase, and multiple protein-protein interaction domains. Previous studies have suggested an important role for kinase activity in LRRK2-induced neuronal toxicity and inclusion body formation.
View Article and Find Full Text PDFParkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the degeneration of dopamine (DA) and non-DA neurons, the almost uniform presence of Lewy bodies, and motor deficits. Although the majority of PD is sporadic, specific genetic defects in rare familial cases have provided unique insights into the pathogenesis of PD. Through the creation of animal and cellular models of mutations in LRRK2 and alpha-synuclein, which are linked to autosomal-dominant PD, and mutations in parkin, DJ-1, and PINK1, which are responsible for autosomal-recessive PD, insight into the molecular mechanisms of this disorder are leading to new ideas about the pathogenesis of PD.
View Article and Find Full Text PDFIdentification of the signaling pathways that mediate neuronal survival signaling could lead to new therapeutic targets for neurologic disorders and stroke. Sublethal doses of NMDA can induce robust endogenous protective mechanisms in neurons. Through differential analysis of primary library expression and microarray analyses, here we have shown that nuclear factor I, subtype A (NFI-A), a member of the NFI/CAAT-box transcription factor family, is induced in mouse neurons by NMDA receptor activation in a NOS- and ERK-dependent manner.
View Article and Find Full Text PDFActivation of poly(ADP-ribose) polymerase (PARP) and subsequent translocation of apoptosis-inducing factor contribute to caspase-independent neuronal injury from N-methyl-d-aspartate, oxygen-glucose deprivation, and ischemic stroke. Some studies have implicated endonuclease G in the DNA fragmentation associated with caspase-independent cell death. Here, we compared wild-type and endonuclease G null mice to investigate whether endonuclease G plays a role in the PARP-dependent injury that results from transient focal cerebral ischemia.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) gene are associated with late-onset, autosomal-dominant, familial Parkinson's disease (PD) and also contribute to sporadic disease. The LRRK2 gene encodes a large protein with multiple domains, including functional Roc GTPase and protein kinase domains. Mutations in LRRK2 most likely cause disease through a toxic gain-of-function mechanism.
View Article and Find Full Text PDFExcessive oxidative damage to DNA leads to activation of poly(ADP-ribose) polymerase-1 (PARP-1), accumulation of PAR polymers, translocation of apoptosis-inducing factor (AIF) from mitochondria to the nucleus, and cell death. In this study, we compared the effect of gene deletion of PARP-1 and PARP-2, enzymes activated by DNA oxidative damage, in male mice subjected to 2 h of focal cerebral ischemia. Infarct volume at 3 days of reperfusion was markedly decreased to a similar extent in PARP-1- and PARP-2-null mice.
View Article and Find Full Text PDFMutations in parkin are the second most common known cause of Parkinson's disease (PD). Parkin is an ubiquitin E3 ligase that monoubiquitinates and polyubiquitinates proteins to regulate a variety of cellular processes. Loss of parkin's E3 ligase activity is thought to play a pathogenic role in both inherited and sporadic PD.
View Article and Find Full Text PDFGenetic alterations in alpha-synuclein cause autosomal dominant familial Parkinsonism and may contribute to sporadic Parkinson's disease (PD). Synphilin-1 is an alpha-synuclein-interacting protein, with implications in PD pathogenesis related to protein aggregation. Currently, the in vivo role of synphilin-1 in alpha-synuclein-linked pathogenesis is not fully understood.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common known cause of Parkinson's disease (PD). Whether loss of LRRK2 function accounts for neurodegeneration of dopamine neurons in PD is not known, nor is it known whether LRRK2 kinase activity modulates the susceptibility of dopamine (DA) neurons to the selective dopaminergic toxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). To better understand the role of LRRK2 in DA neuronal survival and its role in the susceptibility of DA neurons to MPTP, we generated LRRK2 knock-out (KO) mice lacking the kinase domain of LRRK2.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2010
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential (DeltaPsi(m)) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation of Parkin to mitochondria induced by a collapse of DeltaPsi(m) relies on PINK1 expression and that overexpression of WT but not of mutated PINK1 causes Parkin translocation to mitochondria, even in cells with normal DeltaPsi(m).
View Article and Find Full Text PDFInterest in the functions of microRNAs (miRNAs) in the nervous system has recently expanded to include their roles in neurodegeneration. Investigations have begun to reveal the influence of miRNAs on both neuronal survival and the accumulation of toxic proteins that are associated with neurodegeneration, and are providing clues as to how these toxic proteins can influence miRNA expression.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1-dependent cell death (known as parthanatos) plays a pivotal role in many clinically important events including ischaemia/reperfusion injury and glutamate excitotoxicity. A recent study by us has shown that uncleaved AIF (apoptosis-inducing factor), but not calpain-hydrolysed truncated-AIF, was rapidly released from the mitochondria during parthanatos, implicating a second pool of AIF that might be present in brain mitochondria contributing to the rapid release. In the present study, a novel AIF pool is revealed in brain mitochondria by multiple biochemical analyses.
View Article and Find Full Text PDFMutations in the leucine-rich repeat kinase 2 (LRRK2) gene are currently recognized as the most common genetic cause of parkinsonism. Among the large number of LRRK2 mutations identified to date, the G2019S variant is the most common. In Asia, however, another LRRK2 variant, G2385R, appears to occur more frequently.
View Article and Find Full Text PDFMissense mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common causes of both familial and sporadic forms of Parkinson disease and are also associated with diverse pathological alterations. The mechanisms whereby LRRK2 mutations cause these pathological phenotypes are unknown. We used immunohistochemistry with 3 distinct anti-LRRK2 antibodies to characterize the expression of LRRK2 in the brains of 21 subjects with various neurodegenerative disorders and 7 controls.
View Article and Find Full Text PDFMol Neurodegener
July 2009
Background: Missense mutations and multiplications of the alpha-synuclein gene cause autosomal dominant familial Parkinson's disease (PD). alpha-Synuclein protein is also a major component of Lewy bodies, the hallmark pathological inclusions of PD. Therefore, alpha-synuclein plays an important role in the pathogenesis of familial and sporadic PD.
View Article and Find Full Text PDFDNA damage is a proposed pathogenic factor in neurodegenerative disorders such as Parkinson disease. To probe the underpinning mechanism of such neuronal perturbation, we sought to produce an experimental model of DNA damage. We thus first assessed DNA damage by in situ nick translation and emulsion autoradiography in the mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 4 x 20 mg/kg, ip, every 2 h), a neurotoxin known to produce a model of Parkinson disease.
View Article and Find Full Text PDFMutations in leucine-rich repeat kinase-2 (LRRK2) are the most common known cause of Parkinson disease, but how this protein results in the pathobiology of Parkinson disease is unknown. Moreover, there is variability in pathology among cases, and alpha-synuclein (alpha-syn) neuronal inclusions are often present, but whether LRRK2 is present in these pathological inclusions is controversial. This study characterizes novel LRRK2 antibodies, some of which preferentially recognize an aggregated form of LRRK2, as observed in cell culture models.
View Article and Find Full Text PDF