Publications by authors named "Ted D Pham"

We present a comprehensive study of the electrochemical capacitance between a one-dimensional electronic material and an electrolyte. In contrast to a conventional, planar electrode, the nanoscale dimension of the electrode (with diameter smaller than the Debye length and approaching the size of the ions in solution) qualitatively changes the capacitance, which we measure and model herein. Furthermore, the finite density of states in these low dimensional electronic systems results in a quantum capacitance, which is comparable to the electrochemical capacitance.

View Article and Find Full Text PDF

The intrinsic apoptotic pathway and the resultant mitochondrial outer membrane permeabilization (MOMP) via BAK and BAX oligomerization, cytochrome c (cytc) release, and caspase activation are well studied, but their effect on cytosolic pH is poorly understood. Using isolated mitochondria, we show that MOMP results in acidification of the surrounding medium. BAK conformational changes associated with MOMP activate the OMA1 protease to cleave OPA1 resulting in remodeling of the cristae and release of the highly concentrated protons within the cristae invaginations.

View Article and Find Full Text PDF

It is now well established that, even within a single cell, multiple copies of the mitochondrial genome may be present (genetic heteroplasmy). It would be interesting to develop techniques to determine if and to what extent this genetic variation results in functional variation from one mitochondrion to the next (functional heteroplasmy). Measuring mitochondrial respiration can reveal the organelles' functional capacity for Adenosine triphosphate (ATP) production and determine mitochondrial damage that may arise from genetic or age related defects.

View Article and Find Full Text PDF

The interaction of cell and organelle membranes (lipid bilayers) with nanoelectronics can enable new technologies to sense and measure electrophysiology in qualitatively new ways. To date, a variety of sensing devices have been demonstrated to measure membrane currents through macroscopic numbers of ion channels. However, nanoelectronic based sensing of single ion channel currents has been a challenge.

View Article and Find Full Text PDF