BACE1 inhibition to prevent Aβ peptide formation is considered to be a potential route to a disease-modifying treatment for Alzheimer's disease. Previous efforts in our laboratory using a combined structure- and property-based approach have resulted in the identification of aminooxazoline xanthenes as potent BACE1 inhibitors. Herein, we report further optimization leading to the discovery of inhibitor 15 as an orally available and highly efficacious BACE1 inhibitor that robustly reduces CSF and brain Aβ levels in both rats and nonhuman primates.
View Article and Find Full Text PDFThe β-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1) is one of the most hotly pursued targets for the treatment of Alzheimer's disease. We used a structure- and property-based drug design approach to identify 2-aminooxazoline 3-azaxanthenes as potent BACE1 inhibitors which significantly reduced CSF and brain Aβ levels in a rat pharmacodynamic model. Compared to the initial lead 2, compound 28 exhibited reduced potential for QTc prolongation in a non-human primate cardiovascular safety model.
View Article and Find Full Text PDFUsing fragment-based screening of a focused fragment library, 2-aminoquinoline 1 was identified as an initial hit for BACE1. Further SAR development was supported by X-ray structures of BACE1 cocrystallized with various ligands and molecular modeling studies to expedite the discovery of potent compounds. These strategies enabled us to integrate the C-3 side chain on 2-aminoquinoline 1 extending deep into the P2' binding pocket of BACE1 and enhancing the ligand's potency.
View Article and Find Full Text PDF[structure: see text] By total synthesis, mycolactone C has been established as an approximately 1:1 mixture of Z-Delta4'5'- and E-Delta4'5'-geometric isomers of C12'-deoxymycolactones A and B.
View Article and Find Full Text PDFThe concise, enantioselective total synthesis of the potent antitumor antibiotics (+)-FR900482 and (+)-FR66979 are described. Sharpless asymmetric epoxidation technology has been deployed to construct the optically active aziridine-containing fragment that is joined to the aromatic moiety in a highly convergent manner. Dimethyldioxirane effects the remarkable one-step deprotection/oxidative cyclization of an eight-membered ring amino-ketone to the unique hydroxylamine hemiketal ring system that is a distinctive structural motif of FR900482.
View Article and Find Full Text PDF[reaction: see text] The synthesis and biochemical reactivity of the first photoactivated mitosene-based DNA interstrand cross-linking agent is described.
View Article and Find Full Text PDF