Publications by authors named "Ted Aulich"

Conventional ammonia production consumes significant energy and causes enormous carbon dioxide (CO) emissions globally. To lower energy consumption and mitigate CO emissions, a facile, environmentally friendly, and cost-effective one-pot method for the synthesis of a ruthenium-based nitrogen reduction nanocatalyst has been developed using reduced graphene oxide (rGO) as a matrix. The nanocatalyst synthesis was based on a single-step simultaneous reduction of RuCl into ruthenium-based nanoparticles (Ru-based NPs) and graphene oxide (GO) into rGO using glucose as the reducing agent and stabilizer.

View Article and Find Full Text PDF

The impacts of biodiesel on gaseous and particulate matter (PM) emissions of a JP-8-fueled T63 engine were investigated. Jet fuel was blended with the soybean oil-derived methyl ester biofuel at various concentrations and combusted in the turbine engine. The engine was operated at three power settings, namely ground idle, cruise, and takeoff power, to study the impact of the biodiesel at significantly different pressure and temperature conditions.

View Article and Find Full Text PDF

The concept of a biorefinery for higher-alcohol production is to integrate ethanol and methanol formation via fermentation and biomass gasification, respectively, with conversion of these simple alcohol intermediates into higher alcohols via the Guerbet reaction. 1-Butanol results from the self-condensation of ethanol in this multistep reaction occurring on a single catalytic bed. Combining methanol with ethanol gives a mixture of propanol, isobutanol, and 2-methyl-1-butanol.

View Article and Find Full Text PDF

Bench-scale research demonstrated that using an efficient esterification step to integrate an ethanol with a carboxylic acid fermentation stream offers potential for producing valuable ester feedstocks and fuels. Polar organic acids from bacterial fermentations are difficult to extract and purify, but formation of the ammonium salts and their conversion to esters facilitates the purifications. An improved esterification procedure gave high yields of esters, and this method will lower the cost of ester production.

View Article and Find Full Text PDF