LL-37, the only human cathelicidin, is a cationic antimicrobial peptide with antibacterial and antifungal activity. LL-37 is released from neutrophil granules and produced by epithelial cells. It has been implicated in host defence against influenza A virus (IAV) in recent studies.
View Article and Find Full Text PDFθ-Defensins are cyclic octadecapeptides found in nonhuman primates whose broad antiviral spectrum includes HIV-1, HSV-1, severe acute respiratory syndrome coronavirus, and influenza A virus (IAV). We previously reported that synthetic θ-defensins called retrocyclins can neutralize and aggregate various strains of IAV and increase IAV uptake by neutrophils. This study describes two families of peptides, hapivirins and diprovirins, whose design was inspired by retrocyclins.
View Article and Find Full Text PDFDefensins were first identified in 1985 and are now recognized as part of a large family of antimicrobial peptides, divided into three categories: alpha-, beta-, and -defensins. These defensin classes differ in structure, sites of expression and biological activities. Human alpha-defensins include peptides that are expressed primarily in neutrophils, whereas human beta-defensins are widely expressed in epithelial cells, including those lining the respiratory tract.
View Article and Find Full Text PDFSurfactant protein D (SP-D) plays important roles in innate defense against respiratory viruses [including influenza A viruses (IAVs)]. Truncated trimers composed of its neck and carbohydrate recognition domains (NCRDs) bind various ligands; however, they have minimal inhibitory activity for IAV. We have sought to find ways to increase the antiviral activity of collectin NCRDs.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2010
Collectins are collagenous lectins present in blood, respiratory lining fluid, and other mucosal secretions that play important roles in innate defense against infection. The collectin, surfactant protein D (SP-D), limits infection by viruses and bacteria in the respiratory tract, eye, and female genital tract. Multimeric SP-D has strong antiviral activity and is a potent viral and bacterial agglutinin and opsonin; however, trimers composed of the neck and carbohydrate recognition domain (hSP-D-NCRD) of SP-D lack these activities.
View Article and Find Full Text PDFDefensins are widespread in nature and have activity against a broad range of pathogens. Defensins have direct antimicrobial effects and also modulate innate and adaptive immune responses. We consider the role of human defensins and the cathelicidin LL-37 in defense of respiratory, gastrointestinal, and genitourinary tracts and the oral cavity, skin, and eye.
View Article and Find Full Text PDFWe have reported that the alpha-defensins human neutrophil peptides (HNP)-1 and HNP-2 neutralize and aggregate influenza A virus (IAV) and promote uptake of IAV by neutrophils. These alpha-defensins were also shown to bind to surfactant protein (SP)-D and reduce its antiviral activity. In this study, we examined retrocyclin (RC)1 and RC2, humanized versions of the antiviral theta-defensins found in the leukocytes of certain nonhuman primates.
View Article and Find Full Text PDFOral Microbiol Immunol
February 2009
Introduction: Saliva is a potentially important barrier against respiratory viral infection but its mechanism of action is not well studied.
Methods: We tested the antiviral activities of whole saliva, specific salivary gland secretions, and purified salivary proteins against strains of influenza A virus (IAV) in vitro.
Results: Whole saliva or parotid or submandibular/sublingual secretions from healthy donors inhibited IAV based on hemagglutination inhibition and neutralization assays.
Surfactant protein D (SP-D) plays important roles in the initial innate defense against influenza A virus (IAV). The collagen domain of SP-D is probably critical for its homeostatic functions in vivo and has been implicated in the modulation of macrophage responses to SP-D-ligand complexes. For the current studies, we used a panel of rat SP-D mutants lacking all or part of the collagen domain to more specifically evaluate the contributions of this domain to viral interactions.
View Article and Find Full Text PDFBackground: Surfactant protein D (SP-D) plays an important role in innate defense against influenza A viruses (IAVs) and other pathogens.
Methods: We tested antiviral activities of recombinant human SP-D against a panel of IAV strains that vary in glycosylation sites on their hemagglutinin (HA). For these experiments a recombinant version of human SP-D of the Met11, Ala160 genotype was used after it was characterized biochemically and structurally.
Expert Rev Clin Immunol
July 2008
Innate immunity is critical in the early containment of influenza virus infection. The innate response is surprisingly complex. A variety of soluble innate inhibitors in respiratory secretions provide an initial barrier to infection.
View Article and Find Full Text PDFCollectins are multimeric host defence lectins with trimeric CRDs (carbohydrate-recognition domains) and collagen and N-terminal domains that form higher-order structures composed of four or more trimers. Recombinant trimers composed of only the CRD and adjacent neck domain (termed NCRD) retain binding activity for some ligands and mediate some functional activities. The lung collectin SP-D (surfactant protein D) has strong neutralizing activity for IAVs (influenza A viruses) in vitro and in vivo, however, the NCRD derived from SP-D has weak viral-binding ability and lacks neutralizing activity.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2007
Surfactant protein D (SP-D) and neutrophils participate in the early innate immune response to influenza A virus (IAV) infection. SP-D increases neutrophil uptake of IAV and modulates neutrophil respiratory burst responses to IAV; however, neutrophil proteases have been shown to degrade SP-D, and human neutrophil peptide defensins bind to SP-D and can cause precipitation of SP-D from bronchoalveolar lavage fluid (BALF). BALF has significant antiviral activity against IAV.
View Article and Find Full Text PDFHuman neutrophil peptides (HNPs) are released from granules of neutrophils in response to various activating stimuli and they participate in the killing of bacteria and the stimulation of various inflammatory responses. HNPs also inhibit infectivity of enveloped viruses, including influenza A virus (IAV). In this study, we demonstrate that HNPs increase the uptake of IAV and bacteria by neutrophils.
View Article and Find Full Text PDFThe collectins, lung surfactant proteins A and D (SP-A and SP-D), contribute to innate host defense against influenza A virus (IAV) in vivo. Although collectins bind to the viral hemagglutinin (HA) and inhibit early stages of viral infection in vitro, they also bind to the neuraminidase (NA) and inhibit NA activity. We used a variety of NA functional assays, viral strains and recombinant (mutant or wild type) collectins to characterize the mechanism of NA inhibition.
View Article and Find Full Text PDFBackground: Surfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection. Common human polymorphisms of SP-D have been found in many human populations and associated with increased risk of certain infections. We recently reported that the Thr/Thr 11 form of SP-D is associated with low serum levels and assembles predominantly as trimers as opposed to the more common multimeric forms of SP-D.
View Article and Find Full Text PDFSurfactant protein D (SP-D) plays important roles in innate host defense against influenza A virus (IAV) infection, in part by modifying interactions with neutrophils. Human neutrophil defensins (HNPs) inhibit infectivity of enveloped viruses, including IAV. Our goal in this study was to characterize antiviral interactions between SP-D and HNPs.
View Article and Find Full Text PDFThe envelope protein (gp120) of human immunodeficiency virus (HIV) contains highly conserved mannosylated oligosaccharides. These glycoconjugates contribute to resistance to antibody neutralization, and binding to cell surface lectins on macrophages and dendritic cells. Mannose-binding lectin (MBL) binds to gp120 and plays a role in defence against the virus.
View Article and Find Full Text PDFMumps virus strains isolated during an epidemic in Lithuania in 1998 - 2000 were studied. Viruses of the neurovirulent C1 and non-neurovirulent C2 small hydrophobic (SH) genotype variant were sequenced for the haemagglutinin-neuraminidase (HN) and fusion (F) protein genes. Amino acid differences between C1 and C2 strains were found for both proteins.
View Article and Find Full Text PDFThough mumps virus (MuV) is a monotypic virus, genetic variation between strains has been described. Viruses have been placed into genotypes designated A-L based on the nucleotide sequence of the small hydrophobic (SH) gene, which is the most variable gene in the mumps genome. Molecular characterisation of MuV is an important component of mumps surveillance because it can help identify the transmission pathways of the virus as well as distinguish between wild-type and vaccine strains.
View Article and Find Full Text PDFThe epidemiology of respiratory syncytial virus (RSV) group A was followed by nucleotide sequencing of the variable parts of the glycoprotein (G) gene. The amino acid sequences of an aminoterminal (A-terminal, amino acids 90-132) and carboxyterminal (C-terminal, amino acids 262-298) portion of the G protein in 47 virus strains, collected in Stockholm, between 1965 and 2004, were determined. In phylogenetic analysis jointly with previously described genotypes (GA1 to GA7 and SAA1), 33 virus strains (isolated between 1991 and 2004) belonged to genotype GA5, seven to GA2, three to genotype GA1 (isolated before 1991), one to genotype GA4 (isolated in 1982) and three to genotype GA7 (isolated in 1993 and 2001).
View Article and Find Full Text PDFSix different genotypes of mumps virus, A, C, D, G, H and I, genotyped on the basis of the small hydrophobic protein gene sequence, were subjected to antigenic comparison. Monoclonal antibodies directed against the haemagglutinin-neuraminidase protein of the SBL-1 strain of genotype A were used in immunofluorescence tests with different mumps virus strains. In addition, the six virus genotypes were compared by cross-neutralization tests with human post-vaccination sera after vaccination with the Jeryl Lynn (JL) strain of mumps virus and with rabbit hyperimmune sera directed against the A or D genotypes of mumps virus.
View Article and Find Full Text PDFScand J Infect Dis
January 2003
The nucleotide sequences of a 300 bp segment carrying the small hydrophobic (SH) protein gene of a large number of virus strains, belonging to 10 different mumps virus genotypes denoted A-J, were compared. When virus strains belonging to the same genotype were compared intra-genotypically, a variation in the range 2-4% was recorded. The level of inter-genotypical variation was higher (8-18%).
View Article and Find Full Text PDFAn epidemic of mumps in Lithuania started in December 1998 and continued until May 2000. The total registered number of cases was about 11.000 of a total of 3,7 million inhabitants in Lithuania (29,7 cases/10,000).
View Article and Find Full Text PDFTwenty-nine Danish virus isolates and 14 serum samples from patients with mumps were genotyped by nucleotide sequencing of the small hydrophobic (SH) protein gene and the deduced 57 amino acid sequences were aligned with sequences of mumps virus strains published previously. Four neurovirulent genotypes of the SH protein gene, genotypes C, D, H and a new genotype, designated J, were found. There was a dynamic fluctuation of the different genotypes over the two decade period of time.
View Article and Find Full Text PDF