One key task in the early fight against the COVID-19 pandemic was to plan non-pharmaceutical interventions to reduce the spread of the infection while limiting the burden on the society and economy. With more data on the pandemic being generated, it became possible to model both the infection trends and intervention costs, transforming the creation of an intervention plan into a computational optimization problem. This paper proposes a framework developed to help policy-makers plan the best combination of non-pharmaceutical interventions and to change them over time.
View Article and Find Full Text PDFSeveral test function suites are being used for numerical benchmarking of multiobjective optimization algorithms. While they have some desirable properties, such as well-understood Pareto sets and Pareto fronts of various shapes, most of the currently used functions possess characteristics that are arguably underrepresented in real-world problems such as separability, optima located exactly at the boundary constraints, and the existence of variables that solely control the distance between a solution and the Pareto front. Via the alternative construction of combining existing single-objective problems from the literature, we describe the bbob-biobj test suite with 55 bi-objective functions in continuous domain, and its extended version with 92 bi-objective functions (bbob-biobj-ext).
View Article and Find Full Text PDF