N-methyladenosine (mA) regulates mRNA metabolism. While it has been implicated in the development of the mammalian brain and in cognition, the role of mA in synaptic plasticity, especially during cognitive decline, is not fully understood. In this study, we employed methylated RNA immunoprecipitation sequencing to obtain the mA epitranscriptome of the hippocampal subregions CA1, CA3, and the dentate gyrus and the anterior cingulate cortex (ACC) in young and aged mice.
View Article and Find Full Text PDFMultiple sulfatase deficiency (MSD, MIM #272200) results from pathogenic variants in the SUMF1 gene that impair proper function of the formylglycine-generating enzyme (FGE). FGE is essential for the posttranslational activation of cellular sulfatases. MSD patients display reduced or absent sulfatase activities and, as a result, clinical signs of single sulfatase disorders in a unique combination.
View Article and Find Full Text PDFWhile some individuals age without pathological memory impairments, others develop age-associated cognitive diseases. Since changes in cognitive function develop slowly over time in these patients, they are often diagnosed at an advanced stage of molecular pathology, a time point when causative treatments fail. Thus, there is great need for the identification of inexpensive and minimal invasive approaches that could be used for screening with the aim to identify individuals at risk for cognitive decline that can then undergo further diagnostics and eventually stratified therapies.
View Article and Find Full Text PDFNeurons are highly compartmentalized cells that depend on local protein synthesis. Messenger RNAs (mRNAs) have thus been detected in neuronal dendrites, and more recently in the pre- and postsynaptic compartments as well. Other RNA species such as microRNAs have also been described at synapses where they are believed to control mRNA availability for local translation.
View Article and Find Full Text PDFIn current clinical practice, care of diseased patients is often restricted to separated disciplines. However, such an organ-centered approach is not always suitable. For example, cognitive dysfunction is a severe burden in heart failure patients.
View Article and Find Full Text PDFFine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development.
View Article and Find Full Text PDFAims: Deregulation of epigenetic processes and aberrant gene expression are important mechanisms in heart failure. Here we studied the potential relevance of m6A RNA methylation in heart failure development.
Methods And Results: We analysed m6A RNA methylation via next-generation sequencing.
Alzheimer's disease (AD) is the most common neurodegenerative disorder causing huge emotional and economic burden to our societies. An effective therapy has not been implicated yet, which is in part also due to the fact that pathological changes occur years before clinical symptoms manifest. Thus, there is a great need for the development of a translatable biomarker.
View Article and Find Full Text PDFBackground: Monocyte-to-macrophage differentiation involves major biochemical and structural changes. In order to elucidate the role of gene regulatory changes during this process, we used high-throughput sequencing to analyze the complete transcriptome and epigenome of human monocytes that were differentiated in vitro by addition of colony-stimulating factor 1 in serum-free medium.
Results: Numerous mRNAs and miRNAs were significantly up- or down-regulated.
Methylation of N6-adenosine (m6A) has been observed in many different classes of RNA, but its prevalence in microRNAs (miRNAs) has not yet been studied. Here we show that a knockdown of the m6A demethylase FTO affects the steady-state levels of several miRNAs. Moreover, RNA immunoprecipitation with an anti-m6A-antibody followed by RNA-seq revealed that a significant fraction of miRNAs contains m6A.
View Article and Find Full Text PDFMutations in components of the major spliceosome have been described in disorders with craniofacial anomalies, e.g., Nager syndrome and mandibulofacial dysostosis type Guion-Almeida.
View Article and Find Full Text PDFGenome-wide association studies have revealed numerous risk loci associated with diverse diseases. However, identification of disease-causing variants within association loci remains a major challenge. Divergence in gene expression due to cis-regulatory variants in noncoding regions is central to disease susceptibility.
View Article and Find Full Text PDFA block of single-nucleotide polymorphisms within intron 1 of the FTO (fat mass and obesity associated) gene is associated with variation in body weight. Previous works suggest that increased expression of FTO, which encodes a 2-oxoglutarate-dependent nucleic acid demethylase, leads to increased body weight, although the underlying mechanism has remained unclear. To elucidate the function of FTO, we examined the consequences of altered FTO levels in cultured cells and murine brain.
View Article and Find Full Text PDFEur J Hum Genet
September 2010
As shown by genome-wide association studies single-nucleotide polymorphisms (SNPs) within intron 1 of the FTO gene are associated with the body mass index and type II diabetes, although the functional significance of these SNPs has remained unclear. Using primer extension assays, we have determined the ratio of allelic FTO transcript levels in unspliced heterogeneous nuclear RNA preparations from blood of individuals heterozygous for SNP rs9939609. Allelic expression ratios of the neighboring RPGRIP1L gene were investigated in individuals who were heterozygous for SNP rs4784319 and heterozygous or homozygous for rs9939609.
View Article and Find Full Text PDFGenomic imprinting is an epigenetic process leading to parent-of-origin-specific DNA methylation and gene expression. To date, approximately 60 imprinted human genes are known. Based on genome-wide methylation analysis of a patient with multiple imprinting defects, we have identified a differentially methylated CpG island in intron 2 of the retinoblastoma (RB1) gene on chromosome 13.
View Article and Find Full Text PDF