Publications by authors named "Te-Haw Wu"

Reverse electron transfer (RET), an abnormal backward flow of electrons from complexes III/IV to II/I of mitochondria, causes the overproduction of a reduced-type CoQ to boost downstream production of mitochondrial superoxide anions that leads to ischemia-reperfusion injury (IRI) to organs. Herein, we studied low-coordinated gold nanoclusters (AuNCs) with abundant oxygen-binding sites to form an electron-demanding trapper that allowed rapid capture of electrons to compensate for the CoQ/CoQH imbalance during RET. The AuNCs were composed of only eight gold atoms that formed a Cs-symmetrical configuration with all gold atoms exposed on the edge site.

View Article and Find Full Text PDF

The dynamic oscillation implicated in structural heterogeneity during the self-assembly of amyloid peptide 1-42 (Aβ42) may play a crucial role in eliciting cellular responses. We developed a real-time monitoring platform to observe an oscillatory non-equilibrium interaction that dominated the Aβ42 clearance by neuronal cells during interplay with an oscillator (lipopolysaccharide, LPS). Molecular dynamics studies indicated that the electrostatic and hydrophobic segments of LPS involved in the temporary heteromolecular association and slightly decelerated the intrinsic thermally-induced protein dynamics of Aβ42.

View Article and Find Full Text PDF

Weight loss by increasing energy consumption of thermogenic adipocytes to overcome obesity remains a challenge. Herein, we established a transdermal device that was based on the local and temporarily controlled delivery of succinate (SC), a tricarboxylic acid cycle metabolic intermediate to stimulate the thermogenesis pathway of uncoupling protein 1 (UCP1) and accelerate energy dissipation of brown adipose tissue (BAT) under the dorsal interscapular skin, further initiating the consumption of fatty acids by systemic metabolism. SC microneedle patches significantly suppressed weight gain and fat accumulation of remote organs, including liver and peripheral white adipose tissue (WAT) in high-fat diet-induced obese mice.

View Article and Find Full Text PDF

A major challenge in the use of chemotherapy and immunotherapy is hypoxia-induced progression of tumor cells. We aim to curb hypoxia using metal-based O-producing nanomedicine. The key focus is therapeutic targeting of hypoxia-inducible factor 1α (HIF-1α), a major reactive oxygen species (ROS)-activated player that drives hypoxia-dependent tumor progression.

View Article and Find Full Text PDF

In living systems, non-equilibrium states that control the assembly-disassembly of cellular components underlie the gradual complexification of life, whereas in nonliving systems, most molecules follow the laws of thermodynamic equilibrium to sustain dynamic consistency. Little is known about the roles of non-equilibrium states of interactions between supramolecules in living systems. Here, a non-equilibrium state of interaction between supramolecular lipopolysaccharide (LPS) and Aβ42, an aggregate-prone protein that causes Alzheimer's disease (AD), was identified.

View Article and Find Full Text PDF

The progress of wound regeneration relies on inflammation management, while neovascular angiogenesis is a critical aspect of wound healing. In this study, the bioactive core and corona synergism of quantized gold (QG) were developed to simultaneously address these complicated issues, combining the abilities to eliminate endotoxins and provide oxygen. The QG was constructed from ultrasmall nanogold and a loosely packed amine-based corona via a simple process, but it could nonetheless eliminate endotoxins (a vital factor in inflammation also called lipopolysaccharides) and provide oxygen in situ for the remodeling of wound sites.

View Article and Find Full Text PDF

A strong interaction between colistin, a last-resort antibiotic of the polymyxin family, and free lipopolysaccharide (LPS, also referred to as endotoxin), released from the Gram-negative bacterial (GNB) outer membrane (OM), has been identified that can decrease the antibacterial efficacy of colistin, potentially increasing the dose of this antibiotic required for treatment. The competition between LPS in the GNB OM and free LPS for the interaction with colistin was prevented by using a supramolecular trap to capture free LPS. The supramolecular trap, fabricated from a subnanometer gold nanosheet with methyl motifs (SAuM), blocks lipid A, preventing the interaction between lipid A and colistin.

View Article and Find Full Text PDF

Endotoxicity originating from a dangerous debris (i.e., lipopolysaccharide, LPS) of Gram-negative bacteria is a challenging clinical problem, but no drugs or therapeutic strategies that can successfully address this issue have been identified yet.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) typically involves oxygen (O ) consumption and therefore suffers from greatly limited anticancer therapeutic efficacy in tumor hypoxia. Here, it is reported for the first time that amine-terminated, PAMAM dendrimer-encapsulated gold nanoclusters (AuNCs-NH ) can produce O for PDT via their intrinsic catalase-like activity. The AuNCs-NH not only show optimum H O consumption via the catalase-like activity over the physiological pH range (i.

View Article and Find Full Text PDF

Despite nanoparticulate platinum (nano-Pt) has been validated to be acting as a platinum-based prodrug for anticancer therapy, the key factor in controlling its cytotoxicity remains to be clarified. In this study, it is found that the corrosion susceptibility of nano-Pt can be triggered by inducing the oxidization of superficial Pt atoms, which can kill both cisplatin-sensitive/resistance cancer cells. Direct evidence in the oxidization of superficial Pt atoms is validated to observe the formation of platinum oxides by X-ray absorption spectroscopy.

View Article and Find Full Text PDF

The cytotoxicity of nanozymes has drawn much attention recently because their peroxidase-like activity can decompose hydrogen peroxide (H2 O2 ) to produce highly toxic hydroxyl radicals (•OH) under acidic conditions. Although catalytic activities of nanozymes are highly associated with their surface properties, little is known about the mechanism underlying the surface coating-mediated enzyme-like activities. Herein, it is reported for the first time that amine-terminated PAMAM dendrimer-entrapped gold nanoclusters (AuNCs-NH2 ) unexpectedly lose their peroxidase-like activity while still retaining their catalase-like activity in physiological conditions.

View Article and Find Full Text PDF

When gold nanoparticles (AuNPs) become extremely small (<2 nm in diameter) as gold nanoclusters (AuNCs), an intriguing issue is whether the interactions of free radicals with AuNCs would be essentially different at sufficiently small size. Herein, we report for the first time that the fluorescence of a polyamidoamine (PAMAM) dendrimer-entrapped Au-cluster is quenched by the paramagnetic nitroxide radical. Based on an upward curving Stern-Volmer plot, the system shows complex fluorescence quenching with a combination of static and dynamic quenching processes.

View Article and Find Full Text PDF

Biothiols have been reported to involve in intracellular redox-homeostasis against oxidative stress. In this study, a highly selective and sensitive fluorescent probe for sensing biothiols is explored by using an ultrasmall gold nanodot (AuND), the dendrimer-entrapped Au8-cluster. This strategy relies upon a thiol/disulfide exchange to trigger the fluorescence change through a photoinduced electron transfer (PET) process between the Au8-cluster (as an electron donor) and 2-pyridinethiol (2-PyT) (as an electron acceptor) for sensing biothiols.

View Article and Find Full Text PDF

We report on caged Pt nanoclusters that are able to exert tumor-inside activation for anticancer chemotherapeutics and to minimize systemic toxicity. By shrinking the Pt size to 1 nm, it possesses corrodibility for dissolution in weakly acidic organelles to release toxic Pt ions. The therapeutic effect in exerting tumor-inside activation is confirmed in vivo by post-modifying a pH-cleavable PEG corona and mixing it with a tumor-homing peptide for tumour suppression.

View Article and Find Full Text PDF

Herein, a promising sensing approach based on the structure fragmentation of poly(amidoamine) (PAMAM) dendrimers for the selective detection of intracellular hypochlorite (OCl(-)) is reported. PAMAM dendrimers were easily disrupted by a cascade of oxidations in the tertiary amines of the dendritic core to produce an unsaturated hydroxylamine with blue fluorescence. Specially, the novel fluorophore was only sensitive to OCl(-), one of reactive oxygen species (ROS), resulting in an irreversible fluorescence turn-off.

View Article and Find Full Text PDF

The proof of concept of a simple sensing platform based on the fluorescence of a gold cluster consisting of eight atoms, which is easily manipulated by reduction and oxidation of a specific molecule in the absence of chemical linkers, is demonstrated. Without using any coupling reagents to arrange the distance of the donor-acceptor pair, the fluorescence of the Au(8) -cluster is immediately switched off in the presence of 2-pyridinethiol (2-PyT) quencher. Through an upward-curving Stern-Volmer plot, the system shows complex fluorescence quenching with a combination of static and dynamic quenching processes.

View Article and Find Full Text PDF