Publications by authors named "Te- Won Lee"

This paper presents a novel probabilistic approach to speech enhancement. Instead of a deterministic logarithmic relationship, we assume a probabilistic relationship between the frequency coefficients and the log-spectra. The speech model in the log-spectral domain is a Gaussian mixture model (GMM).

View Article and Find Full Text PDF

Objectives: To use machine learning classifiers (MLCs) to seek differences in visual fields (VFs) between normal eyes and eyes of HIV+ patients; to find the effect of immunodeficiency on VFs and to compare the effectiveness of MLCs to commonly-used Statpac global indices in analyzing standard automated perimetry (SAP).

Methods: The high CD4 group consisted of 70 eyes of 39 HIV-positive patients with good immune status (CD4 counts were never <100/ml). The low CD4 group had 59 eyes of 38 HIV-positive patients with CD4 cell counts <100/ml at some period of time lasting for at least 6 months.

View Article and Find Full Text PDF

Convolutive mixtures of signals, which are common in acoustic environments, can be difficult to separate into their component sources. Here we present a uniform probabilistic framework to separate convolutive mixtures of acoustic signals using independent vector analysis (IVA), which is based on a joint distribution for the frequency components originating from the same source and is capable of preventing permutation disorder. Different gaussian mixture models (GMM) served as source priors, in contrast to the original IVA model, where all sources were modeled by identical multivariate Laplacian distributions.

View Article and Find Full Text PDF

Purpose: To investigate whether combining optic disc topography and short-wavelength automated perimetry (SWAP) data improves the diagnostic accuracy of relevance vector machine (RVM) classifiers for detecting glaucomatous eyes compared with using each test alone.

Methods: One eye of 144 glaucoma patients and 68 healthy controls from the Diagnostic Innovations in Glaucoma Study were included. RVM were trained and tested with cross-validation on optimized (backward elimination) SWAP features (thresholds plus age; pattern deviation; and total deviation) and on Heidelberg retina tomograph II (HRT) optic disc topography features, independently and in combination.

View Article and Find Full Text PDF

During functional MRI (fMRI) studies, blood oxygenation-level dependent (BOLD) signal associated with neuronal activity acquired from multiple individuals are subject to the derivation of group-averaged brain activation patterns. Unlike other cortical areas, subcortical areas such as the thalamus and basal ganglia often manifest smaller, biphasic BOLD signal that are aberrant from signals originating from cortices. Independent component analysis (ICA) can offer session/individual specific brain activation maps without a priori assumptions regarding the timing or pattern of the signal responses.

View Article and Find Full Text PDF

This paper presents a new approximate Bayesian estimator for enhancing a noisy speech signal. The speech model is assumed to be a Gaussian mixture model (GMM) in the log-spectral domain. This is in contrast to most current models in frequency domain.

View Article and Find Full Text PDF

Purpose: To test the following hypotheses: (1) eyes from patients with human immunodeficiency virus (HIV) have retinal damage that causes subtle field defects, (2) sensitive machine learning classifiers (MLCs) can use these field defects to distinguish fields in HIV patients and normal subjects, and (3) the subtle field defects form meaningful patterns. We have applied supervised MLCs--support vector machine (SVM) and relevance vector machine (RVM)--to determine if visual fields in patients with HIV differ from normal visual fields in HIV-negative controls.

Methods: HIV-positive patients without visible retinopathy were divided into 2 groups: (1) 38 high-CD4 (H), 48.

View Article and Find Full Text PDF

Purpose: To determine whether combining structural (optical coherence tomography, OCT) and functional (standard automated perimetry, SAP) measurements as input for machine learning classifiers (MLCs; relevance vector machine, RVM; and subspace mixture of Gaussians, SSMoG) improves diagnostic accuracy for detecting glaucomatous eyes compared with using each measurement method alone.

Methods: Sixty-nine eyes of 69 healthy control subjects (average age, 62.0, SD 9.

View Article and Find Full Text PDF

An unsupervised classification algorithm is derived by modeling observed data as a mixture of several mutually exclusive classes that are each described by linear combinations of independent, non-Gaussian densities. The algorithm estimates the data density in each class by using parametric nonlinear functions that fit to the non-Gaussian structure of the data. This improves classification accuracy compared with standard Gaussian mixture models.

View Article and Find Full Text PDF

Independent component analysis (ICA) of fMRI data generates session/individual specific brain activation maps without a priori assumptions regarding the timing or pattern of the blood-oxygenation-level-dependent (BOLD) signal responses. However, because of a random permutation among output components, ICA does not offer a straightforward solution for the inference of group-level activation. In this study, we present an independent vector analysis (IVA) method to address the permutation problem during fMRI group data analysis.

View Article and Find Full Text PDF

To achieve color vision, the brain has to process signals of the cones in the retinal photoreceptor mosaic in a cone-type-specific way. We investigated the possibility that cone-type-specific wiring is an adaptation to the statistics of the cone signals. We analyzed estimates of cone responses to natural scenes and found that there is sufficient information in the higher order statistics of L- and M-cone responses to distinguish between cones of different types, enabling unsupervised learning of cone-type specificity.

View Article and Find Full Text PDF

Purpose: To determine whether a variational Bayesian independent component analysis mixture model (vB-ICA-mm), a form of unsupervised machine learning, can be used to identify and quantify areas of progression in standard automated perimetry fields.

Methods: In an earlier study, it was shown that a model using vB-ICA-mm can separate normal fields from fields with six different patterns of visual field loss related to glaucomatous optic neuropathy (GON) along maximally independent axes. In the present study, an independent group of 191 patient eyes (66 with ocular hypertension (OHT), 12 with suspected glaucoma by field, 61 with suspected glaucoma by disc, and 52 with glaucoma) with five or more standard visual fields under observation for a mean of 6.

View Article and Find Full Text PDF

Purpose: Clustering by unsupervised learning with machine learning classifiers was shown to segment clusters of patterns in standard automated perimetry (SAP) for glaucoma in previous publications. In this study, unsupervised learning by independent component analysis decomposed SAP field patterns into axes, and the information represented by these axes was evaluated.

Methods: SAP fields were used that were obtained with the Humphrey Visual Field Analyzer (Carl Zeiss Meditec, Dublin, CA) from 189 normal eyes and 156 eyes with glaucomatous optic neuropathy (GON) determined by masked review with stereoscopic optic disc photographs.

View Article and Find Full Text PDF

Purpose: To classify healthy and glaucomatous eyes using relevance vector machine (RVM) and support vector machine (SVM) learning classifiers trained on retinal nerve fiber layer (RNFL) thickness measurements obtained by scanning laser polarimetry (SLP).

Methods: Seventy-two eyes of 72 healthy control subjects (average age = 64.3 +/- 8.

View Article and Find Full Text PDF

In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER).

View Article and Find Full Text PDF

Purpose: To determine whether topographical measurements of the parapapillary region analyzed by machine learning classifiers can detect early to moderate glaucoma better than similarly processed measurements obtained within the disc margin and to improve methods for optimization of machine learning classifier feature selection.

Methods: One eye of each of 95 patients with early to moderate glaucomatous visual field damage and of each of 135 normal subjects older than 40 years participating in the longitudinal Diagnostic Innovations in Glaucoma Study (DIGS) were included. Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) mean height contour was measured in 36 equal sectors, both along the disc margin and in the parapapillary region (at a mean contour line radius of 1.

View Article and Find Full Text PDF

Purpose: To determine whether an unsupervised machine learning classifier can identify patterns of visual field loss in standard visual fields consistent with typical patterns learned by decades of human experience.

Methods: Standard perimetry thresholds for 52 locations plus age from one eye of each of 156 patients with glaucomatous optic neuropathy (GON) and 189 eyes of healthy subjects were clustered with an unsupervised machine classifier, variational Bayesian mixture of factor analysis (vbMFA).

Results: The vbMFA formed five distinct clusters.

View Article and Find Full Text PDF

Purpose: To determine whether Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Dossenheim, Germany) classification techniques and investigational support vector machine (SVM) analyses can detect optic disc abnormalities in glaucoma-suspect eyes before the development of visual field abnormalities.

Methods: Glaucoma-suspect eyes (n = 226) were classified as converts or nonconverts based on the development of repeatable (either two or three consecutive) standard automated perimetry (SAP)-detected abnormalities over the course of the study (mean follow-up, approximately 4.5 years).

View Article and Find Full Text PDF

Neurons in the early stages of processing in the primate visual system efficiently encode natural scenes. In previous studies of the chromatic properties of natural images, the inputs were sampled on a regular array, with complete color information at every location. However, in the retina cone photoreceptors with different spectral sensitivities are arranged in a mosaic.

View Article and Find Full Text PDF

Algorithms for data-driven learning of domain-specific overcomplete dictionaries are developed to obtain maximum likelihood and maximum a posteriori dictionary estimates based on the use of Bayesian models with concave/Schur-concave (CSC) negative log priors. Such priors are appropriate for obtaining sparse representations of environmental signals within an appropriately chosen (environmentally matched) dictionary. The elements of the dictionary can be interpreted as concepts, features, or words capable of succinct expression of events encountered in the environment (the source of the measured signals).

View Article and Find Full Text PDF

Purpose: To determine whether neural network techniques can improve differentiation between glaucomatous and nonglaucomatous eyes, using the optic disc topography parameters of the Heidelberg Retina Tomograph (HRT; Heidelberg Engineering, Heidelberg, Germany).

Methods: With the HRT, one eye was imaged from each of 108 patients with glaucoma (defined as having repeatable visual field defects with standard automated perimetry) and 189 subjects without glaucoma (no visual field defects with healthy-appearing optic disc and retinal nerve fiber layer on clinical examination) and the optic nerve topography was defined by 17 global and 66 regional HRT parameters. With all the HRT parameters used as input, receiver operating characteristic (ROC) curves were generated for the classification of eyes, by three neural network techniques: linear and Gaussian support vector machines (SVM linear and SVM Gaussian, respectively) and a multilayer perceptron (MLP), as well as four previously proposed linear discriminant functions (LDFs) and one LDF developed on the current data with all HRT parameters used as input.

View Article and Find Full Text PDF

Glaucoma is a progressive optic neuropathy with characteristic structural changes in the optic nerve head reflected in the visual field. The visual-field sensitivity test is commonly used in a clinical setting to evaluate glaucoma. Standard automated perimetry (SAP) is a common computerized visual-field test whose output is amenable to machine learning.

View Article and Find Full Text PDF

The human visual system encodes the chromatic signals conveyed by the three types of retinal cone photoreceptors in an opponent fashion. This opponency is thought to reduce redundant information by decorrelating the photoreceptor signals. Correlations in the receptor signals are caused by the substantial overlap of the spectral sensitivities of the receptors, but it is not clear to what extent the properties of natural spectra contribute to the correlations.

View Article and Find Full Text PDF

We apply a variational method to automatically determine the number of mixtures of independent components in high-dimensional datasets, in which the sources may be nonsymmetrically distributed. The data are modeled by clusters where each cluster is described as a linear mixture of independent factors. The variational Bayesian method yields an accurate density model for the observed data without overfitting problems.

View Article and Find Full Text PDF

Purpose: To compare the ability of several machine learning classifiers to predict development of abnormal fields at follow-up in ocular hypertensive (OHT) eyes that had normal visual fields in baseline examination.

Methods: The visual fields of 114 eyes of 114 patients with OHT with four or more visual field tests with standard automated perimetry over three or more years and for whom stereophotographs were available were assessed. The mean (+/-SD) number of visual field tests was 7.

View Article and Find Full Text PDF