Publications by authors named "Tchurikov N"

Multiple exogenous or endogenous factors alter gene expression patterns by different mechanisms that are poorly understood. We used RNA-Seq analysis in order to study changes in gene expression in melanoma cells that are capable of vasculogenic mimicry that is inhibited upon the action of an inhibitor of vasculogenic mimicry. Here, we show that the drug induces a strong upregulation of 50 genes that control the cell cycle and microtubule cytoskeleton coupled with a strong downregulation of 50 genes that control different cellular metabolic processes.

View Article and Find Full Text PDF

Gene expression patterns are very sensitive to external influences and are reflected in phenotypic changes. It was previously described that transferring melanoma cells from a plastic surface to Matrigel led to formation of de novo vascular networks-vasculogenic mimicry-that are characteristic to a stemness phenotype in aggressive tumors. Up to now there was no detailed data about the gene signature accompanying this process.

View Article and Find Full Text PDF

Nucleoli form interchromosomal contacts with genes controlling differentiation and carcinogenesis. DUX4 genes specify transcription factor possessing two homeodomains. Previously, using Circular Chromosome Conformation Capture (4С) approach on population of cells, it was demonstrated that DUX4 gene clusters form frequent contacts with nucleoli.

View Article and Find Full Text PDF

Different developmental genes shape frequent dynamic inter-chromosomal contacts with rDNA units in human and cells. In the course of differentiation, changes in these contacts occur, coupled with changes in the expression of hundreds of rDNA-contacting genes. The data suggest a possible role of nucleoli in the global regulation of gene expression.

View Article and Find Full Text PDF

Forum domains are 50-100-kb stretches of DNA delimited by the hotspots of double-strand breaks (DSBs). These domains possess coordinately expressed genes. However, molecular mechanisms of such regulation are not clear.

View Article and Find Full Text PDF

The expression of clusters of rDNA genes influences pluripotency; however, the underlying mechanisms are not yet known. These clusters shape inter-chromosomal contacts with numerous genes controlling differentiation in human and cells. This suggests a possible role of these contacts in the formation of 3D chromosomal structures and the regulation of gene expression in development.

View Article and Find Full Text PDF

In this paper, we describe a method for the study of colocalization effects between stretch-stretch and stretch-point genome tracks based on a set of indices varying within the (-1, +1) interval. The indices combine the distances between the centers of neighboring stretches and their lengths. The extreme boundaries of the interval correspond to the complete colocalization of the genome tracks or its complete absence.

View Article and Find Full Text PDF

Double-strand DNA breakes (DSBs) are the most deleterious and widespread examples of DNA damage. They inevitably originate from endogenous mechanisms in the course of transcription, replication, and recombination, as well as from different exogenous factors. If not properly repaired, DSBs result in cell death or diseases.

View Article and Find Full Text PDF

Small noncoding RNAs of different origins and classes play several roles in the regulation of gene expression. Here, we show that diverged and rearranged fragments of rDNA units are scattered throughout the human genome and that endogenous small noncoding RNAs are processed by the Microprocessor complex from specific regions of ribosomal RNAs shaping hairpins. These small RNAs correspond to particular sites inside the fragments of rDNA that mostly reside in intergenic regions or the introns of about 1500 genes.

View Article and Find Full Text PDF

The regulation of gene expression has been studied for decades, but the underlying mechanisms are still not fully understood. As well as local and distant regulation, there are specific mechanisms of regulation during development and physiological modulation of gene activity in differentiated cells. Current research strongly supports a role for the 3D chromosomal structure in the regulation of gene expression.

View Article and Find Full Text PDF

Endogenous hot spots of DNA double-strand breaks (DSBs) are tightly linked with transcription patterns and cancer. There are nine hot spots of DSBs (denoted Pleiades) in human rDNA units that are located exclusively inside the intergenic spacer (IGS). Profiles of Pleiades coincide with the profiles of γ-H2AX, suggesting a high level of in vivo breakage inside rDNA genes.

View Article and Find Full Text PDF

A 16-year-old female presented with left iliac fossa pain. In January 2021, she was admitted to her local hospital with severe lower abdominal pain and the pelvic ultrasound demonstrated a 13-cm left internal iliac artery dissecting aneurysm with its partial thrombosis. On examination, she had a high-arched palate, multiple skin stretch marks, flat feet and a soft systolic ejection murmur at the left 5th mid-clavicular line.

View Article and Find Full Text PDF

To study the rDNA contacts with genes in three human cell lines of different origin, we used 4C approach. Our data indicate that the same set of about five hundred genes frequently shape contacts with rDNA clusters in HEK293T, K652, and hESM01 cells. Gene ontology search suggests that the genes are involved in development and morphogenesis.

View Article and Find Full Text PDF

Chromosomes are organized into 3D structures that are important for the regulation of gene expression and differentiation. Important role in formation of inter-chromosome contacts play rDNA clusters that make up nucleoli. In the course of differentiation, heterochromatization of rDNA units in mouse cells is coupled with the repression or activation of different genes.

View Article and Find Full Text PDF

In experiments on mouse and human cells it was demonstrated that rDNA plays an important role in epigenetic regulation of many genes. To identify and study rDNA-contacting genes in Drosophila we used the 4С (circular chromosome conformation capture) approach. We detected very stable contacts of rDNA genes within a 5-kb region inside the Tlk gene residing in X chromosome.

View Article and Find Full Text PDF

rDNA genes play an important role in epigenetic regulation and in differentiation of eukaryotic cells. Using the 4C (circular chromosome conformation capture) approach and model HEK293T cells, we analyzed the rDNA-contacting gene FANK1, using anchor located inside rDNA genes. At the 5' end of the FANK1 gene we detected frequent contacts with rDNA clusters.

View Article and Find Full Text PDF

In order to study the effects of heat shock treatment on the distribution of rDNA contacts at the region possessing DUX genes inside chromosome 4 we used 4C approach. Our data indicate that the treatment removes the frequent rDNA contacts in this region. The recent data on involvement of superenhancers that are decorated by broad H3K27ac marks in the phase separation mechanisms and the previous data demonstrating that these broad marks are the favorite sites of rDNA contacts taken together with our data on sensitivity of the contacts to the heat shock treatment suggest that the phase separation mechanisms are involved in the reversible rDNA-mediated regulation of gene expression via the contacts.

View Article and Find Full Text PDF

Human rDNA clusters form numerous contacts with different chromosomal regions as evidenced by chromosome conformation capture data. Heterochromatization of rDNA genes leads to heterochromatization in different chromosomal regions coupled with the activation of the transcription of genes related to differentiation. These data suggest a role for rDNA clusters in the regulation of many human genes.

View Article and Find Full Text PDF

Many human genes that control human embryonic development and differentiation of human cells form chromosomal contact with rRNA gene clusters, which are involved in the epigenetic regulation of many genes. The sites of rRNA gene contact often fall on extended (up to 50 kb) regions containing a chromatin mark, H3K27ac histone, typical for superenhancers, as well as on pericentromeric and subtelomeric regions of chromosomes. We found that the DUX4 genes located in the subtelomeric region of human chromosome 4 are surrounded by regions that are often in contact with the rRNA genes.

View Article and Find Full Text PDF

Gene therapy for AIDS based on RNA interference (RNAi) is currently looked upon as a promising alternative to conventional antiretroviral chemotherapy. The high variability of HIV-1 is the main challenge in developing new approaches to AIDS therapy. To date, about 18 million HIV-1 infected individuals receive antiretroviral therapy worldwide.

View Article and Find Full Text PDF

HIV-1 is one of the most variable viruses. The development of gene therapy technology using RNAi for AIDS/HIV-1 treatment is a potential alternative for traditional anti-retroviral therapy. Anti-HIV-1 siRNA should aim to exploit the most conserved viral targets.

View Article and Find Full Text PDF

The data on forum domains formed by DNA double-strand break (DSB) hotspots are reviewed including forum domain identification by pulsed-field gel electrophoresis, whole genome mapping of these domains using deep sequencing strategies, analysis of gene expression in forum domains, and binding of nuclear proteins to their boundaries. Earlier unpublished data by the authors are presented. The "piano playing" hypothesis is suggested based on coordinated active transcription in some of the forum domains and coordinated silencing in the majority of them.

View Article and Find Full Text PDF

The efficient development of antiviral drugs, including efficient antiviral small interfering RNAs (siRNAs), requires continuous monitoring of the strict correspondence between a drug and the related highly variable viral DNA/RNA target(s). Deep sequencing is able to provide an assessment of both the general target conservation and the frequency of particular mutations in the different target sites. The aim of this study was to develop a reliable bioinformatic pipeline for the analysis of millions of short, deep sequencing reads corresponding to selected highly variable viral sequences that are drug target(s).

View Article and Find Full Text PDF

Enhancers and insulators are involved in the regulation of gene expression, but the basic underlying mechanisms of action of these elements are unknown. We analyzed the individual effects of the enhancer and the insulator from Drosophila mobile elements copia [enh(copia)] and gypsy using transfected genetic constructs in S2 cells. This system excludes the influence of genomic cis regulatory elements.

View Article and Find Full Text PDF

RNAi has been suggested for use in gene therapy of HIV/AIDS, but the main problem is that HIV-1 is highly variable and could escape attack from the small interfering RNAs (siRNAs) due to even single nucleotide substitutions in the potential targets. To exhaustively check the variability in selected RNA targets of HIV-1, we used ultra-deep sequencing of six regions of HIV-1 from the plasma of two independent cohorts of patients from Russia. Six RNAi targets were found that are invariable in 82%-97% of viruses in both cohorts and are located inside the domains specifying reverse transcriptase (RT), integrase, vpu, gp120, and p17.

View Article and Find Full Text PDF