Exploitation of natural resources is a driver of human infectious disease emergence. The emergence of animal reservoirs of Guinea worm Dracunculus medinensis, particularly in domestic dogs Canis familiaris, has become the major impediment to global eradication of this human disease. 93% of all Guinea worms detected worldwide in 2020 were in dogs in Chad.
View Article and Find Full Text PDFBackground: Guinea worm (Dracunculus medinensis) was detected in Chad in 2010 after a supposed ten-year absence, posing a challenge to the global eradication effort. Initiation of a village-based surveillance system in 2012 revealed a substantial number of dogs infected with Guinea worm, raising questions about paratenic hosts and cross-species transmission.
Methodology/principal Findings: We coupled genomic and surveillance case data from 2012-2018 to investigate the modes of transmission between dog and human hosts and the geographic connectivity of worms.
Variation in the spatial ecology of animals influences the transmission of infections and so understanding host behavior can improve the control of diseases. Despite the global distribution of free-ranging domestic dogs Canis familiaris and their role as reservoirs for zoonotic diseases, little is known about the dynamics of their space use. We deployed GPS loggers on owned but free-ranging dogs from six villages in rural Chad, and tracked the movements of 174 individuals in the dry season and 151 in the wet season.
View Article and Find Full Text PDFBackground: Guinea worm is a debilitating parasitic infection targeted for eradication. Annual human cases have dropped from approximately 3,500,000 in 1986 to 54 in 2019. Recent identification of canine cases in Chad threatens progress, and therefore detection, prevention, and containment of canine cases is a priority.
View Article and Find Full Text PDFGlobal eradication of human Guinea worm disease (dracunculiasis) has been set back by the emergence of infections in animals, particularly domestic dogs Canis familiaris. The ecology and epidemiology of this reservoir is unknown. We tracked dogs using GPS, inferred diets using stable isotope analysis and analysed correlates of infection in Chad, where numbers of Guinea worm infections are greatest.
View Article and Find Full Text PDFContact patterns strongly influence the dynamics of disease transmission in both human and non-human animal populations. Domestic dogs Canis familiaris are a social species and are a reservoir for several zoonotic infections, yet few studies have empirically determined contact patterns within dog populations. Using high-resolution proximity logging technology, we characterised the contact networks of free-ranging domestic dogs from two settlements (n = 108 dogs, covering >80% of the population in each settlement) in rural Chad.
View Article and Find Full Text PDFDracunculus medinensis, or human Guinea worm (GW), causes a painful and debilitating infection. The global Guinea Worm Eradication Program (GWEP) has successfully reduced human GW cases from 3.5 million in 21 countries in 1986 to only 30 cases in three remaining countries in 2017.
View Article and Find Full Text PDF