Stress granules (SGs) are formed in the cytoplasm in response to various toxic agents and are believed to play a critical role in the regulation of mRNA metabolism during stress. In SGs, mRNAs are stored in an abortive translation initiation complex that can be routed to either translation initiation or degradation. Here, we show that G3BP, a phosphorylation-dependent endoribonuclease that interacts with RasGAP, is recruited to SGs in cells exposed to arsenite.
View Article and Find Full Text PDFAdvanced therapies have transformed the treatment of inflammatory bowel disease; however, many patients fail to respond, highlighting the need for therapies tailored to the underlying cell and molecular disease drivers. The first-in-class oral molecule ABX464 (obefazimod), which selectively upregulates miR-124, has demonstrated its ability to be a well-tolerated treatment with rapid and sustained efficacy in patients with ulcerative colitis (UC). Here, we provide evidence that ABX464 affects the immune system in vitro , in the murine model of inflammatory bowel disease, and in patients with UC.
View Article and Find Full Text PDFInflammatory diseases are believed to develop as a result of dysregulated inflammatory responses to environmental factors on susceptible genetic backgrounds. Operating at the level of post-transcriptional gene regulation, miRNAs are a class of endogenous, small noncoding RNAs that can promote downregulation of protein expression by translational repression and/or mRNA degradation of target mRNAs involved in inflammation. MiR-124 is a crucial modulator of inflammation and innate immunity that could provide therapeutic restitution of physiological pathways lost in inflammatory diseases.
View Article and Find Full Text PDFTo clarify the function of cyclin A2 in colon homeostasis and colorectal cancer (CRC), we generated mice deficient for cyclin A2 in colonic epithelial cells (CECs). Colons of these mice displayed architectural changes in the mucosa and signs of inflammation, as well as increased proliferation of CECs associated with the appearance of low- and high-grade dysplasias. The main initial events triggering those alterations in cyclin A2-deficient CECs appeared to be abnormal mitoses and DNA damage.
View Article and Find Full Text PDFThe Hippo signaling pathway is a major regulator of organ growth, which controls the activity of the transcription coactivator Yorkie (Yki) in Drosophila and its homolog YAP in mammals. Both Yki and YAP proteins exist as alternatively spliced isoforms containing either one or two WW domains. The biological importance of this conserved alternative splicing event is unknown.
View Article and Find Full Text PDFAlternative splicing (AS) plays a central role during cell-fate determination. However, how the core spliceosomal factors (CSFs) are involved in this process is poorly understood. Here, we report the down-regulation of the U2AF1 CSF during stem cell differentiation.
View Article and Find Full Text PDFAging-dependent changes in tissue function are associated with the development of metabolic diseases. However, the molecular connections linking aging, obesity, and diabetes remain unclear. Lamin A, lamin C, and progerin, products of the gene, have antagonistic functions on energy metabolism and life span.
View Article and Find Full Text PDFObjectives: To assess the safety and tolerability as well as antiretroviral impact of ABX464, an oral investigational drug with a novel mechanism of HIV-1 inhibition (ClinicalTrials.gov NCT02735863).
Methods: Randomised, double-blind, placebo-controlled, Phase IIa study in individuals living with HIV-1 on antiretroviral therapy at six clinical centres in Spain, France and Belgium.
ABX464 is a first-in-class, clinical-stage, small molecule for oral administration that has shown strong anti-inflammatory effects in the DSS-model for inflammatory bowel disease (IBD) and also prevents replication of the HIV virus. ABX464 which binds to cap binding complex (CBC) has demonstrated safety and efficacy in a phase 2a proof-of-concept clinical trial in patients with Ulcerative colitis. Previously, with limited technologies, it was not possible to quantify the effect of ABX464 on viral and cellular RNA biogenesis.
View Article and Find Full Text PDFRNA-Seq enables the generation of extensive transcriptome information providing the capability to characterize transcripts (including alternative isoforms and polymorphism), to quantify expression and to identify differential regulation in a single experiment. To reveal the capacity of new anti-HIV ABX464 candidate in modulating the expression of genes, datasets were generated and validated using RNA-seq approach. This comprehensive dataset will be useful to deepen the comprehensive understanding of the progression of human immunodeficiency virus (HIV) associated with mucosal damage in the gastrointestinal (GI) tract and subsequent inflammation, providing an opportunity to generate new therapies, diagnoses, and preventive strategies.
View Article and Find Full Text PDFObjective: In this study, we looked for a new family of latency reversing agents.
Design: We searched for G-protein-coupled receptors (GPCR) coexpressed with the C-C chemokine receptor type 5 (CCR5) in primary CD4 T cells that activate infected cells and boost HIV production.
Methods: GPCR coexpression was unveiled by reverse transcriptase-PCR.
The progression of human immunodeficiency virus (HIV) is associated with mucosal damage in the gastrointestinal (GI) tract. This damage enables bacterial translocation from the gut and leads to subsequent inflammation. Dextran sulfate sodium (DSS-exposure) is an established animal model for experimental colitis that was recently shown to recapitulate the link between GI-tract damage and pathogenic features of SIV infection.
View Article and Find Full Text PDFWe investigated the safety and antiviral effects of an anti-HIV compound (ABX464) with a unique mechanism of viral replication inhibition. This was a randomized, double-blind, placebo-controlled, dose-ranging study in treatment-naive HIV-infected patients. Participants were assigned to eight groups; each group included eight subjects receiving either the study compound, ABX464 ( = 6), or the corresponding placebo ( = 2), according to a randomization code.
View Article and Find Full Text PDFBackground: An anti-HIV compound (ABX464) has been developed with a novel mechanism of activity in that it blocks viral gene expression in cells that are already infected.
Objectives: A first-in-man study was conducted to determine the pharmacokinetic and safety profiles of ABX464. This was carried out as an open label, parallel group, single ascending dose, exploratory study.
Unlabelled: Bakground/Objectives:Intense drug discovery efforts in the metabolic field highlight the need for novel strategies for the treatment of obesity. Alternative splicing (AS) and/or polyadenylation enable the LMNA gene to express distinct protein isoforms that exert opposing effects on energy metabolism and lifespan. Here we aimed to use the splicing factor SRSF1 that contribute to the production of these different isoforms as a target to uncover new anti-obesity drug.
View Article and Find Full Text PDFABX464 is an antiviral that provides a novel approach to the reduction and control of HIV infection. Investigation of food influence is important in the optimization of treatment. An open-label, food effect, randomized study which included 2 groups of 24 subjects each was carried out to assess the bioavailability and safety of single (group 1) and repeated (group 2) oral doses of ABX464 (50 mg) under fed or fasted conditions.
View Article and Find Full Text PDFNeuronal granules play an important role in the localization and transport of translationally silenced messenger ribonucleoproteins in neurons. Among the factors associated with these granules, the RNA-binding protein G3BP1 (stress-granules assembly factor) is involved in neuronal plasticity and is induced in Alzheimer's disease. We immunopurified a stable complex containing G3BP1 from mouse brain and performed high-throughput sequencing and cross-linking immunoprecipitation to identify the associated RNAs.
View Article and Find Full Text PDFBackground: Current therapies have succeeded in controlling AIDS pandemic. However, there is a continuing need for new drugs, in particular those acting through new and as yet unexplored mechanisms of action to achieve HIV infection cure. We took advantage of the unique feature of proviral genome to require both activation and inhibition of splicing of viral transcripts to develop molecules capable of achieving long lasting effect on viral replication in humanized mouse models through inhibition of Rev-mediated viral RNA biogenesis.
View Article and Find Full Text PDFSerine-/arginine-rich (SR) proteins are RNA-binding proteins that are primarily involved in alternative splicing. Expression of some SR proteins is frequently upregulated in tumors, and previous reports have demonstrated that these proteins can directly participate in cell transformation. Identifying factors that can rescue the effects of SR overexpression in vivo is, therefore, of potential therapeutic interest.
View Article and Find Full Text PDFSGs can be visualized in cells by immunostaining of specific protein components or polyA+ mRNAs. SGs are highly dynamic and the study of their assembly and fate is important to understand the cellular response to stress. The deficiency in key factors of SGs like G3BP (RasGAP SH3 domain Binding Protein) leads to developmental defects in mice and alterations of the Central Nervous System.
View Article and Find Full Text PDFAlternative RNA processing of LMNA pre-mRNA produces three main protein isoforms, that is, lamin A, progerin, and lamin C. De novo mutations that favor the expression of progerin over lamin A lead to Hutchinson-Gilford progeria syndrome (HGPS), providing support for the involvement of LMNA processing in pathological aging. Lamin C expression is mutually exclusive with the splicing of lamin A and progerin isoforms and occurs by alternative polyadenylation.
View Article and Find Full Text PDFSIRT6 is a NAD(+)-dependent deacetylase that modulates chromatin structure and safeguards genomic stability. Until now, SIRT6 has been assigned to the nucleus and only nuclear targets of SIRT6 are known. Here, we demonstrate that in response to stress, C.
View Article and Find Full Text PDF