Neurons and glia work together to dynamically regulate neural circuit assembly and maintenance. In this study, we show exhibit large-scale synapse formation and elimination as part of normal CNS circuit maturation, and that glia use conserved molecules to regulate these processes. Using a high throughput ELISA-based screening assay, we identify new glial genes that regulate synapse numbers in including the scavenger receptor ortholog Croquemort (Crq).
View Article and Find Full Text PDFAstrocytes play crucial roles in regulating neural circuit function by forming a dense network of synapse-associated membrane specializations, but signaling pathways regulating astrocyte morphogenesis remain poorly defined. Here, we show the Drosophila lipid-binding G protein-coupled receptor (GPCR) Tre1 is required for astrocytes to establish their intricate morphology in vivo. The lipid phosphate phosphatases Wunen/Wunen2 also regulate astrocyte morphology and, via Tre1, mediate astrocyte-astrocyte competition for growth-promoting lipids.
View Article and Find Full Text PDFis a powerful model in which to perform genetic screens, but screening assays that are both rapid and can be used to examine a wide variety of cellular and molecular pathways are limited. offer an extensive toolbox of GFP-based transcriptional reporters, GFP-tagged proteins, and driver lines, which can be used to express GFP in numerous subpopulations of cells. Thus, a tool that can rapidly and quantitatively evaluate GFP levels in tissue would provide a broadly applicable screening platform.
View Article and Find Full Text PDFGenetic studies identified mutations in several immune-related genes that confer increased risk for developing Alzheimer's disease (AD), suggesting a key role for microglia in AD pathology. Microglia are recruited to and actively modulate the local toxicity of amyloid plaques in models of AD through these cells' transcriptional and functional reprogramming to a disease-associated phenotype. However, it remains unknown whether microglia actively respond to amyloid accumulation before plaque deposition in AD.
View Article and Find Full Text PDFVariants in the microglial receptor TREM2 confer risk for multiple neurodegenerative diseases. However, it remains unknown how this receptor functions on microglia to modulate these diverse neuropathologies. To understand the role of TREM2 on microglia more generally, we investigated changes in microglial function in Trem2 mice.
View Article and Find Full Text PDFBackground: The R47H variant of Triggering Receptor Expressed on Myeloid cells 2 (TREM2) confers greatly increased risk for Alzheimer's disease (AD), reflective of a central role for myeloid cells in neurodegeneration. Understanding how this variant confers AD risk promises to provide important insights into how myeloid cells contribute to AD pathogenesis and progression.
Methods: In order to investigate this mechanism, CRISPR/Cas9 was used to generate a mouse model of AD harboring one copy of the single nucleotide polymorphism (SNP) encoding the R47H variant in murine Trem2.
Unlabelled: Neuroinflammation is an important contributor to Alzheimer's disease (AD) pathogenesis, as underscored by the recent identification of immune-related genetic risk factors for AD, including coding variants in the gene TREM2 (triggering receptor expressed on myeloid cells 2). Understanding TREM2 function promises to provide important insights into how neuroinflammation contributes to AD pathology. However, studies so far have produced seemingly conflicting results, with reports that amyloid pathology can be both decreased and increased in TREM2-deficient AD mouse models.
View Article and Find Full Text PDFThe major reservoirs for HIV in the CNS are in the microglia, perivascular macrophages, and to a lesser extent, astrocytes. To study the molecular events controlling HIV expression in the microglia, we developed a reliable and robust method to immortalize microglial cells from primary glia from fresh CNS tissues and commercially available frozen glial cells. Primary human cells, including cells obtained from adult brain tissue, were transformed with lentiviral vectors expressing SV40 T antigen or a combination of SVR40 T antigen and hTERT.
View Article and Find Full Text PDFVariants in triggering receptor expressed on myeloid cells 2 (TREM2) confer high risk for Alzheimer's disease (AD) and other neurodegenerative diseases. However, the cell types and mechanisms underlying TREM2's involvement in neurodegeneration remain to be established. Here, we report that TREM2 is up-regulated on myeloid cells surrounding amyloid deposits in AD mouse models and human AD tissue.
View Article and Find Full Text PDFAlzheimer's disease (AD) is typified by a robust microglial-mediated inflammatory response within the brain. Indeed, microglial accumulation around plaques in AD is one of the classical hallmarks of the disease pathology. Although microglia have the capacity to remove β-amyloid deposits and alleviate disease pathology, they fail to do so.
View Article and Find Full Text PDFSeveral Alzheimer's disease (AD) risk genes are specifically expressed by microglia within the CNS. However, the mechanisms by which microglia regulate the pathological hallmarks of AD--extracellular deposition of β-amyloid (Aβ) and intraneuronal hyperphosphorylation of microtubule-associated protein tau (MAPT)--remain to be established. Notably, deficiency for the microglial CX3CR1 receptor has opposing effects on Aβ and MAPT pathologies.
View Article and Find Full Text PDF