Publications by authors named "Taylor R Grimm"

As water treatment technology has improved, the amount of available process data has substantially increased, making real-time, data-driven fault detection a reality. One shortcoming of the fault detection literature is that methods are usually evaluated by comparing their performance on hand-picked, short-term case studies, which yields no insight into long-term performance. In this work, we first evaluate multiple statistical and machine learning approaches for detrending process data.

View Article and Find Full Text PDF