Introduction: Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen (). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease.
View Article and Find Full Text PDFThe Peptidoglycan (PG) cell wall of the Lyme disease (LD) spirochete, Borrelia burgdorferi (Bb), contributes to structural and morphological integrity of Bb; is a persistent antigen in LD patients; and has a unique pentapeptide with L-Ornithine as the third amino acid that cross-links its glycan polymers. A borrelial homolog (BB_0167) interacted specifically with borrelilal PG via its peptidoglycan interacting motif (MHELSEKRARAIGNYL); was localized to the protoplasmic cylinder of Bb; and was designated as Borrelia peptidoglycan interacting Protein (BpiP). A bpiP mutant displayed no defect under in vitro growth conditions with similar levels of several virulence-related proteins.
View Article and Find Full Text PDFTransformation techniques used to genetically manipulate Borrelia burgdorferi, the agent of Lyme disease, play a critical role in generating mutants that facilitate analyses of the role of genes in the pathophysiology of this bacterium. A number of borrelial mutants have been successfully isolated and characterized since the first electrotransformation procedure was established 25 years ago (Samuels, 1995). This article is directed at additional considerations for transforming infectious B.
View Article and Find Full Text PDF